Plastic Anisotropy Research of As-Rolled 7050 Aluminum Alloy Plate with T7451 Temper

2012 ◽  
Vol 189 ◽  
pp. 130-133
Author(s):  
De Bin Chen ◽  
Hui E Hu ◽  
Xiao Dong Kong

Plastic anisotropy of the as-rolled 7050 aluminum alloy plate with T7451 temper was investigated by tensile tests, OM, SEM and TEM. The results show that the as-rolled 7050 aluminum alloy plate shows plastic anisotropy. The values of the as-rolled 7050 aluminum alloy plate deformed along ST, LT and RD are 7.178%, 10.69% and 12.877%, respectively. The as-rolled 7050 aluminum plate can be considered as a materials with two phases. Microstructure, especially grain shape and precipitate configuration, is the main source of plastic anisotropy of the as-rolled 7050 aluminum alloy plate with T7451 temper.

2021 ◽  
Vol 2066 (1) ◽  
pp. 012109
Author(s):  
Hongming Liu

Abstract In order to study the application of nonlinear ultrasonic in the quantitative identification of defective aluminum plate, different depth cracks are machined on the aluminum alloy plate with a thickness of 10 mm by wire cutting to simulate the defects in the plate. The normal and defective aluminum plates are selected to establish the experimental model, and the continuous wavelet transform (CWT) is used to extract the characteristic parameters of the aluminum plate nonlinear ultrasonic signal. The dimensions of the data are reduced by principal component analysis (PCA), and the principal component with the top three contribution rate are selected as the characteristic value. Finally, the support vector machine (SVM) algorithm is used to analyze the aluminum alloy plate state and classify the defect signal. The experimental results show that the feasibility of nonlinear ultrasonic signal recognition of aluminum plate defects is verified by combining principal component analysis and support vector machine model.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 515
Author(s):  
Hai Gong ◽  
Xuan Cao ◽  
Yaoqiong Liu ◽  
Yunxin Wu ◽  
Fangmin Jiang ◽  
...  

In this work, the finite element method simulated the symmetrical hot rolling process of 7050 aluminum alloy plate. The simulation result show that different thickness layers of 7050 aluminum alloy plate experienced different temperature and strain history in the rolling process, which leads to the difference of recrystallization fraction along the thickness direction and affects the distribution of grain size. The grain size of 7050 aluminum alloy rolled plate was obtained by the metallographic test, which was in good agreement with the simulation result. The true stress-strain curve and yield strength of 7050 aluminum alloy were acquired by hot compression test. Subsequently, a prediction model of yield strength was constructed based on the Hall–Patch relationship. The result show that the predicted inhomogeneity reached 8.7%, and the difference was about 5.3% compared with that of the experimental value.


2018 ◽  
Vol 18 (5) ◽  
pp. 1159-1167 ◽  
Author(s):  
Jun Wang ◽  
Xing-Quan Zhang ◽  
Wei Wei ◽  
Jin-Yu Tong ◽  
Bin Chen ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 623
Author(s):  
Ni Tian ◽  
Zhen Feng ◽  
Xu Shi ◽  
Wenze Wang ◽  
Kun Liu ◽  
...  

In the present study, the fatigue life and fatigue fracture characteristics of annealed 7005 aluminum alloy plates subjected to different pre-tensile deformations were investigated. The results obtained upon increasing the pre-tensile deformation of the alloy plate to 20% revealed that the second-phase particles did not show any obvious changes, and that the thickness of the thin strip grain slightly decreased. The dislocation distribution in the alloy matrix varied significantly among the grains or within each grain as the dislocation density gradually increased with increasing pre-tensile deformation. Moreover, the fatigue performance of the annealed 7005 aluminum alloy plate was significantly improved by the pre-tensile deformation, and the alloy plate subjected to 20% pre-tensile deformation exhibited an optimal fatigue life of ~1.06 × 106 cycles, which was 5.7 times and 5.3 times that of the undeformed and 3% pre-stretched alloy plates, respectively. Two fatigue life plateaus were observed in the pre-tensile deformation ranges of 3–5% and 8–12%, which corresponded to heterogeneous dislocation distribution among various grains and within each grain, respectively. Moreover, two large leaps in the plot of the fatigue-life–pre-tensile-deformation curve were observed, corresponding to the pre-tensile deformation ranges of 5–8% and 16–20%, respectively.


2021 ◽  
Vol 1042 ◽  
pp. 3-8
Author(s):  
Mitsuhiro Watanabe ◽  
Shinpei Sasako

Dissimilar metal lap joining of A5052 aluminum alloy plate and C1100 pure copper plate was performed by using friction stir spot welding. The rotating welding tool, which was composed of a probe part and a shoulder part, was plunged from the aluminum alloy plate which was overlapped on the copper plate, and residual aluminum alloy thickness under the probe part of the welding tool after plunging of the welding tool was controlled in the range from 0 mm to 0.4 mm. The strength of the welding interface was evaluated by using tensile-shear test. Microstructure of the welding interface was examined by using an optical microscope and a field emission scanning electron microscope. The welding was achieved at the residual aluminum alloy thickness under the probe part of the welding tool below 0.3 mm. The welded area was formed at aluminum alloy/copper interface located under the probe part of the welding tool, and its width increased with decreasing the residual aluminum alloy thickness. A characteristic laminate structure was produced in the copper matrix near the welding interface. In the joint fabricated at the residual aluminum alloy thickness below 0.1 mm, hook of Cu was formed at edge of the welded area. The fracture did not occur at the welding interface. A remarkable improvement in strength was observed in the joint fabricated at the residual aluminum alloy thickness below 0.1 mm. The formation of laminate structure and hook is considered to result in joint strength improvement.


Author(s):  
yongbang miao ◽  
Ruifeng Dou ◽  
Zhi Wen ◽  
Xunliang Liu ◽  
Cheng Zhu

Sign in / Sign up

Export Citation Format

Share Document