Experimental Research of Effect on Carrying Capacity of Normal Section of CFRP-Strengthened Beams for CFRP Debonding

2012 ◽  
Vol 193-194 ◽  
pp. 1192-1196
Author(s):  
Ze Jun Liu ◽  
Hai Ping Meng

By the experiment of 13 RC beam strengthened with CFRP, the paper mainly study the effect on the load carrying capacity of normal section of CFRP-strengthened beams for CFRP debonding. The results show that for the strengthened beams without any anchorage at plate-end, they lost load carrying capacity soon after CFRP debonded and quitted working, or went on carrying load like an ordinary RC beam. Besides, the formula for the effective CFRP strain when CFRP end debonded was proposed. For the strengthened beams with sufficient anchorage at plate-end, the strengthened beams should be simplified as simply supported unbonded concrete member after CFRP debonded. A reduction factor was adopted to modify the ultimate tension strain derived from the planar section assumption. The calculated results of ultimate carrying capacity were in reasonable agreement between the suggested formula and the test results.

1987 ◽  
Vol 2 (3) ◽  
pp. 77-80 ◽  
Author(s):  
Marvin R. Pyles ◽  
Joan Stoupa

Abstract In order to quantify the stump anchor capacity of small second-growth Douglas-fir (Pseudotsuga menziesii [Mirb]. Franco) trees, load tests to failure were conducted on 18 stumps from trees 7 to 16.5 in dbh. The tests produced ultimate loads that varied as the square of the tree diameter. However, the ultimate load typically occurred at stump system deformations that were far in excess of that which would be considered failure of a stump anchor. A hyperbolic equation was used to describe the load-deformation behavior of each stump tested and was generalized to describe all the test results. West. J. Appl. For. 2(3):72-80, July 1987.


2019 ◽  
Vol 22 (13) ◽  
pp. 2755-2770
Author(s):  
Fuyun Huang ◽  
Yulong Cui ◽  
Rui Dong ◽  
Jiangang Wei ◽  
Baochun Chen

When casting wet concrete into hollow steel tubular arch during the construction process of a concrete-filled steel tubular arch bridge, an initial stress (due to dead load, etc.) would be produced in the steel tube. In order to understand the influence of this initial stress on the strength of the concrete-filled steel tubular arch bridge, a total of four single tubular arch rib (bare steel first) specimens (concrete-filled steel tubular last) with various initial stress levels were constructed and tested to failure. The test results indicate that the initial stress has a large influence on the ultimate load-carrying capacity and ductility of the arch structure. The high preloading ratio will reduce significantly the strength and ductility that the maximum reductions are over 25%. Then, a finite element method was presented and validated using the test results. Based on this finite element model, a parametric study was performed that considered the influence of various parameters on the ultimate load-carrying capacity of concrete-filled steel tubular arches. These parameters included arch slenderness, rise-to-span ratio, loading method, and initial stress level. The analysis results indicate that the initial stress can reduce the ultimate loading capacity significantly, and this reduction has a strong relationship with arch slenderness and rise-to-span ratio. Finally, a method for calculating the preloading reduction factor of ultimate load-carrying capacity of single concrete-filled steel tubular arch rib structures was proposed based on the equivalent beam–column method.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xuezeng Liu ◽  
Yunlong Sang ◽  
Shuang Ding ◽  
Guiliang You ◽  
Wenxuan Zhu ◽  
...  

Cracks and other diseases may occur in the long-term operation of highway tunnels and reduce the structural load-carrying capacity. Strengthening using carbon fiber reinforced polymer (CFRP) sheets and other materials could extend the service time of the tunnels. However, the process of strengthening tunnels is remarkably different from the process of strengthening aboveground structures because of the secondary load. In order to understand the development of stress and deformation of strengthened tunnels under secondary load, a 1 : 10 scaled model was tested to simulate the tunnel strengthened with CFRP under different damage states. The test results show that CFRP strengthening improved the stiffness of the structure and inhibited the propagation of the existing cracks. The peeling of the CFRP sheets made the strengthened structure quickly lose its load-carrying capacity, causing the instability of the structure. The failure loads of the structures strengthened at different damage states were essentially the same, with an average value of 184% of the original failure load. Nevertheless, the early strengthening helped control the structural deformation. The test results also demonstrate that the bonding strength between the CFRP and the lining is essential for strengthening effectiveness. This study provides a theoretical basis for similar engineering reinforcement designs.


2006 ◽  
Vol 62 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Tadashi ABE ◽  
Tetsukazu KIDA ◽  
Masaaki HOSHINO ◽  
Kiyoshi KATO ◽  
Ming-Chien HSU

2000 ◽  
Vol 49 (6Appendix) ◽  
pp. 96-103
Author(s):  
Tadashi ABE ◽  
Toshiaki SAWANO ◽  
Tetsukazu KIDA ◽  
Masaaki HOSHINO ◽  
Kiyoshi KATO

Author(s):  
Adel Younis ◽  
Usama Ebead

This paper is aimed at studying the bond and shear-strengthening performance of fabric reinforced cementitious matrix (FRCM) systems. Three FRCM systems were compared, namely, polyparaphenylene benzobisoxazole (PBO)-FRCM, Carbon-FRCM, and Glass-FRCM. At first, six double-shear specimens were tested to investigate the FRCM/concrete bond, with the test variables including the fabric type and the bond length. After that, seven shear-critical reinforced concrete (RC) beams were tested under three-point loading, considering the fabric type and strengthening configuration (full/intermittent) as the test variables. As for the double-shear test results, the failure observed was fabric/matrix debonding in carbon-FRCM, matrix/concrete debonding in PBO-FRCM, and fabric rapture in glass-FRCM. The FRCM/concrete bond increased with the bonded length, and the PBO-FRCM showed the highest bond to concrete. Regarding the RC beam tests, the FRCM-strengthened beams showed the same failure mode that is debonding at the FRCM/concrete interface. Nonetheless, FRCM had successfully strengthened the beams in shear: an average gain of 57% in the load carrying capacity was achieved as compared to the non-strengthened reference. Indeed, the full-length strengthening resulted in a better structural improvement compared to the intermittent-strengthening configuration. Amongst the three systems, carbon-FRCM systems were the most efficient in shear-strengthening RC beams.


2013 ◽  
Vol 351-352 ◽  
pp. 939-944
Author(s):  
Ming Li ◽  
De Jian Shen ◽  
Jie Yang ◽  
Zheng Hua Cui

This paper aims at detailed investigation on the relationship between half-cell potentials and load carrying capacity of corroded RC beam-column joints. There are four specimens in the test with the corrosion rate to 0%, 3%, 9% and 15%. Results show that the potentials of normal joint are larger than that of corroded damaged joints. As the corrosion rate of joints increases, load carrying capacity and half-cell potentials decrease. Analytical method based on the values of half-cell potentials to evaluate the load carrying capacity of corroded joint is presented. Comparing the analytical and experimental results, the proposed method can predict the load carrying capacity of corroded reinforced concrete beam-column joints.


2015 ◽  
Vol 816 ◽  
pp. 461-468 ◽  
Author(s):  
Pavel Lekomtsev ◽  
Pavol Božek ◽  
Alexander Romanov ◽  
Andrey Abramov ◽  
Ivan Abramov ◽  
...  

Test results of axial shift of “technical ceramics - glass” parts in taper interference fit joint under axial loading are presented. The load-carrying capacity was tested under normal conditions; a servo press was used to load the test samples. The tested samples were assembled by thermal method.


2015 ◽  
Vol 744-746 ◽  
pp. 319-322
Author(s):  
Chang Chun Dong ◽  
Wei Zhao

To investigate the effect of stiffener on the stiffness and strength of T-stubs, 3 T-stub connections without stiffeners and 6 stiffened T-stub connections with varied shape and thickness of stiffeners were tested monotonically. The load carrying capacity, relative deformations of endplates and strains on the stiffeners and endplates were measured. The load-deformation curves of the connections and load-strain curves were presented. The test results showed that the commonly used stiffeners in current Chinese practice often yield or/and buckle prematurely. And the stiffener designed by the method can meet the requirement in CECS102-2002, which demands that the stiffener should be able to force the extended portion of endplates from clamped-free boundary to plates fixed on two adjacent boundaries.


2014 ◽  
Vol 638-640 ◽  
pp. 998-1001
Author(s):  
Xiao Liu ◽  
Ru Heng Wang ◽  
Bin Jia

Bridge piers generate local destruction at impact point after suffering medium and low speed impact, and then their bearing capacities decrease a lot. In order to analyze the reliability of piers with damage, based on the formula in code, this thesis used ANSYS to analyze surplus normal section load-carrying capacity of reinforced concrete bridge piers with notches in different sizes. The relation curve between axial bearing capacity of piers and scaling area of concrete was obtained. After comparing with formula in code, a new formula was obtained, which can be used in calculating surplus normal section load-carrying capacity of chipped bridge piers.


Sign in / Sign up

Export Citation Format

Share Document