Parametric Modeling and Moving Simulation of Vibrating Screen and Tubers on Potato Harvester

2012 ◽  
Vol 195-196 ◽  
pp. 627-632
Author(s):  
Yong Ying Sang ◽  
Hua Li Yu ◽  
Jing Xia Jia

These In order to overcome the behindhand and inefficient design of potato diggers, feature-based parametric modeling software Autodesk Inventor was used for the modeling of potato diggers. The swing sieve, movement simulation with ADAMS was carried out. The complex velocity acceleration and displacement curves were analyzed. Collision pressure curves were analyzed too. νis less than or equal to 500 mm/s, and αis more than or equal to 2.5m/s2, and less than or equal to 20m/s2. Test results indicated that Collision pressures of small and medium tubers are 120 Newton and 250 Newton respectively, which are all smaller than damaging pressure. Potato can be transferred freely and damage rate is less than or equal to 4% when the frequency is 5.5Hz and the swing is 30mm. It satisfies the design request.

2021 ◽  
Author(s):  
Xinyi Xiao ◽  
Byeong-Min Roh

Abstract The integration of Topology optimization (TO) and Generative Design (GD) with additive manufacturing (AM) is becoming advent methods to lightweight parts while maintaining performance under the same loading conditions. However, these models from TO or GD are not in a form that they can be easily edited in a 3D CAD modeling system. These geometries are generally in a form with no surface/plane information, thus having non-editable features. Direct fabricate these non-feature-based designs and their inherent characteristics would lead to non-desired part qualities in terms of shape, GD&T, and mechanical properties. Current commercial software always requires a significant amount of manual work by experienced CAD users to generate a feature-based CAD model from non-feature-based designs for AM and performance simulation. This paper presents fully automated shaping algorithms for building parametric feature-based 3D models from non-feature-based designs for AM. Starting from automatically decomposing the given geometry into “formable” volumes, which is defined as a sweeping feature in the CAD modeling system, each decomposed volume will be described with 2D profiles and sweeping directions for modeling. The Boolean of modeled components will be the final parametric shape. The volumetric difference between the final parametric form and the original geometry is also provided to prove the effectiveness and efficiency of this automatic shaping methodology. Besides, the performance of the parametric models is being simulated to testify the functionality.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Guodong Zhai ◽  
Xujie Qin ◽  
Xing Yang

As a renewable energy source, wind energy has received more and more attention, and the wind power industry has also been advocated and developed by countries all over the world. In the production and use of wind turbines, the design and manufacturing technology of wind turbine bearings is very important. In order to ensure the reliable operation of the wind power main bearing after installation and realize the longest life of it, this paper designs a bearing test bench that can test the performance of the wind power main bearing. It can analyze the temperature, displacement, load, and moment of the key parts of the 5 MW wind power main shaft bearing. The solid modeling of the experimental platform was carried out using the 3D modeling software SolidWorks. Hydraulic loading system and test monitoring system are designed to realize the drive and control of the test bench. Through the established mathematical model, the central load of the hub is converted into the axial cylinder load and the radial cylinder load of the test bench to simulate the actual working conditions of the tested bearing. The test results show that the test bench meets various loading requirements and can reliably complete the task of testing wind power main bearings.


Author(s):  
Marco Vitali ◽  
Roberta Spallone ◽  
Francesco Carota

In this chapter are developed some considerations about the heuristic potentialities of parametric digital modeling as a tool for analyzing and interpreting architectural heritage. Observed that the parametric thinking in architecture could be recognized almost from the origin, new parametric modeling software allows to verify the design criteria of the past. On the basis of previous studies on Baroque vaulted atria, this chapter develops, using parametric modeling tools, a real vocabulary of shapes and their possible combinations, suggested by the architectural literature of the time and the survey of about seventy atria in Turin. This method has been tested on the case study of the lunettes dome in the atrium of Palazzo Carignano.


Author(s):  
Zhengdong Huang ◽  
Derek Yip-Hoi

Parametric modeling has become a widely accepted mechanism for generating data set variants for product families. These data sets that include geometric models and feature-based process plans are created by specifying values for parameters within feasible ranges specified as constraints in the definition. The ranges denote the extent or envelope of the product family. Increasingly, with globalization the inverse problem is becoming important. This takes independently generated product data sets that on observation belong to the same product family and creates a parametric model for that family. This problem is also of relevance to large companies where independent design teams may work on product variants without much collaboration only to attempt consolidation later on to optimize the design of manufacturing processes and systems. In this paper we present a methodology for generating a feature-based part family parametric model through merging independently generated product data sets. We assume that these data sets are feature-based with relationships such as precedences captured using graphs. Since there are typically numerous ways in which these data sets can be merged, we formulate this as an optimization problem and solve using the A* algorithm. The parameter ranges generated by this approach will be used to design appropriate Reconfigurable Machine Tools (RMTs) and systems (RMS) for manufacturing the resulting part family.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaodong Yang ◽  
Jida Wu ◽  
Haishen Jiang ◽  
Wenqiang Qiu ◽  
Chusheng Liu

Dynamic characteristic and reliability of the vibrating screen are important indicators of large vibrating screen. Considering the influence of coupling motion of each degree of freedom, the dynamic model with six degrees of freedom (6 DOFs) of the vibrating screen is established based on the Lagrange method, and modal parameters (natural frequencies and modes of vibration) of the rigid body are obtained. The finite element modal analysis and harmonic response analysis are carried out to analyze the elastic deformation of the structure. By using the parametric modeling method, beam position is defined as a variable, and an orthogonal experiment on design is performed. The BP neural network is used to model the relationship between beam position and maximal elastic deformation of the lateral plate. Further, the genetic algorithm is used to optimize the established neural network model, and the optimal design parameters are obtained.


2014 ◽  
Vol 657 ◽  
pp. 740-744
Author(s):  
Iulia Huzu ◽  
Nicolae Florin Cofaru

It is primary object of the present study to create a 3D model of the human ankle and an axis system that will show the position the tibia and the foot on a healthy subject. Regarding this scope of the study, the first step in obtaining the 3D model of the bones is scanning. The graphic modeling software used is Catia V5 R20. It is another object of the present study to create an axis system that will be very easy to maneuver and on which we can show different pathological situations, not only on a healthy subject, creating their assembly reference systems considering the mechanical and anatomical axes existing and creating prerequisites for the study of different possible pathological situations. For this scope, was used a triorthogonal axis system called skeleton that is defined as a system of axes Euler. This means that the angles can change the grid, in the desire to analyze different situations. In this study the focus is on the situation of varus equinus, in which the foot leg is not aligned with the tibia, as it is on a healthy subject. It was realized an important element: the incorporation of geometric and dimensional references. The last object in this study is to determine the status of CAE, in order to study the stress and the strain. Creating the CAD system is very important because it can be used to study the osteoarticular system, treatment strategies and related surgery.


Author(s):  
Zafer Leylek ◽  
A. J. Neely

This paper will present an enhanced parametric modeling technique for gas turbine stator and rotor blades. The enhanced blade parametric modeling system has been developed as part of a wider research program into global surrogate modeling of compressor and turbine aerodynamic performance using Design and Analysis of Computer Experiments (DACE) based techniques. The proposed method is based on a hybrid of geometric feature and Non-uniform Rational B-Spline (NURBS) based techniques. A base-line geometry is defined using the physical parameters and represented using NURBS curves and surfaces. A number of constraints are then imposed on the parametric model to ensure that DACE techniques can be effectively utilized. This is accomplished by mapping the geometric feature based parameters from the physical space to an alternative parametric space so that all feasible and numerically stable blade configurations can be represented using a unit hyper-cube. This method ensures a one-to-one mapping between the parametric sub-space and the geometric feature based system. The mapping is geometrically and numerically stable and does not produce ill-conditioned and unrealistic blade geometries. The development of the blade parametric modeling process allows the application of the complete suit of DACE tools and techniques. The method is valid for all axial blade profiles which include compressor and turbine stator and rotor blades.


Sign in / Sign up

Export Citation Format

Share Document