scholarly journals Research on Real Working Condition Simulation and Performance Test of Wind Power Main Bearing Based on Test Bench

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Guodong Zhai ◽  
Xujie Qin ◽  
Xing Yang

As a renewable energy source, wind energy has received more and more attention, and the wind power industry has also been advocated and developed by countries all over the world. In the production and use of wind turbines, the design and manufacturing technology of wind turbine bearings is very important. In order to ensure the reliable operation of the wind power main bearing after installation and realize the longest life of it, this paper designs a bearing test bench that can test the performance of the wind power main bearing. It can analyze the temperature, displacement, load, and moment of the key parts of the 5 MW wind power main shaft bearing. The solid modeling of the experimental platform was carried out using the 3D modeling software SolidWorks. Hydraulic loading system and test monitoring system are designed to realize the drive and control of the test bench. Through the established mathematical model, the central load of the hub is converted into the axial cylinder load and the radial cylinder load of the test bench to simulate the actual working conditions of the tested bearing. The test results show that the test bench meets various loading requirements and can reliably complete the task of testing wind power main bearings.

2011 ◽  
Vol 80-81 ◽  
pp. 1160-1164
Author(s):  
Sheng Wu Yu ◽  
Rui Jun Liu

According to the capability require of the automotive transmission control mechanism(ATCM), and entered into test method by the automotive accessory corporation and user,developed the performance test bench of ATCM,and introduce the makeup and function of test bench and control system. The test results showed that this test bench has many merits such as high test precision,stable anti-interfere capability,rapid fix test element,perfect function of man - computer dialogue,and see about history data facilely. It can provide reliable test method for the ATCM’s test and scientific reference for improve on ATCM.


2021 ◽  
pp. 1-8
Author(s):  
Junta Iguchi ◽  
Minoru Matsunami ◽  
Tatsuya Hojo ◽  
Yoshihiko Fujisawa ◽  
Kenji Kuzuhara ◽  
...  

BACKGROUND: Few studies have investigated the variations in body composition and performance in Japanese collegiate American-football players. OBJECTIVE: To clarify what characterizes competitors at the highest levels – in the top division or on the starting lineup – we compared players’ body compositions and performance test results. METHODS: This study included 172 players. Each player’s body composition and performance (one-repetition maximum bench press, one-repetition maximum back squat, and vertical jump height) were measured; power was estimated from vertical jump height and body weight. Players were compared according to status (starter vs. non-starter), position (skill vs. linemen), and division (1 vs. 2). Regression analysis was performed to determine characteristics for being a starter. RESULTS: Players in higher divisions and who were starters were stronger and had more power, greater body size, and better performance test results. Players in skill positions were relatively stronger than those in linemen positions. Vertical jump height was a significant predictor of being a starter in Division 1. CONCLUSION: Power and vertical jump may be a deciding factor for playing as a starter or in a higher division.


2007 ◽  
Vol 129 (3) ◽  
pp. 647-654 ◽  
Author(s):  
Philippe Michaud ◽  
Aurelian Fatu ◽  
Bernard Villechaise

The paper presents a new experimental device made to analyze the thermoelastohydrodynamic (TEHD) behavior of connecting-rod bearings functioning in severe conditions. First, it focuses on the test bench description. The general principle of the test bench and then the main original technological solutions used with respect to the functional specifications are detailed. Two numerical models are described. They were developed in order to design and to validate two central components of the experimental device. Finally, the paper comments on the test results used to understand and validate the traction∕compression loading system, which is one of the key points in the test bench behavior.


2019 ◽  
Vol 2019 (1) ◽  
pp. 000584-000590
Author(s):  
Dave Saums ◽  
Tim Jensen ◽  
Carol Gowans ◽  
Seth Homer ◽  
Ron Hunadi

Abstract Very challenging requirements exist for thermal interface materials (TIMs) for demanding applications I semiconductor testing. Reliability requirements and multiple contact cycling requirements are substantially different and do not exist in traditional applications for TIMs. Developing new material types to meet these very exacting and unusual requirements has been a long-term goal and requires development of an unusual series of test procedures to demonstrate whether the desired reliability goals have been met. Use of a servo-driven, commercial test stand that has unique features for operation and control is described as the basis for a reliability and performance test program developed for these new materials in three phases, with new data for a fourth test phase added, and comparative values for material performance.


Author(s):  
Makoto SUGIMOTO ◽  
Takaaki ISONO ◽  
Kazuya HAMADA ◽  
Katsumi KAWANO ◽  
Norikiyo KOIZUMI ◽  
...  

2012 ◽  
Vol 500 ◽  
pp. 223-229 ◽  
Author(s):  
Peng Qi Zhang ◽  
Dong Hui Zhao ◽  
Peng Wu ◽  
Yin Yan Wang

This article take the Dongan 465Q non-supercharged engine as the research object, the simulation model is built by GT-POWER and the corresponding test bench is set up. The simulation error is less than 3%, which indicates that the parameters of this model is correct, and can be used for further study of the gasoline engine. The supercharger, Garrett GT12, is selected by the matching calculation. The non-supercharged 465Q engine is modified as a turbocharged engine. The test results show that the power and the fuel consumption of the turbocharged engine is improved obviously, whose power is increased by 48% and fuel consumption is reduced by 4%.


2018 ◽  
Vol 146 (2) ◽  
pp. 107-117
Author(s):  
Tadeusz Kuśnierz

APFSDS-T-TP ammunition of home production for 120 mm gun of LEOPARD 2 tank, being on the inventory of the Polish Armed Forces, has not passed the requirements of NO-13-A513 Defence Standard at certification tests against the random vibrations occurring at its tactical transportation inside the tank. Performed tests have indicated that the fulfilment of Standard requirements can be achieved by upgrading the igniting system what also makes the projecting charge design of APFSDS-T-TP ammunition change. The paper describes the research-development work on the upgrading of the igniting system for the cartridges used in 120 mm gun of LEOPARD 2 tank. The designs of the existing and upgraded igniting systems are presented both with the designing changes of projecting charges and ammunition ballistic and performance test results.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Zbigniew Kamiński

Pipes are widely used in hydraulic and pneumatic subsystems for transferring energy or signals. Accurate prediction of pressure transients is very important in the drive and control circuits of complex fluid-line systems. Based on the approximation of Navier-Stokes equations for one-dimensional flow, a mathematical model of the pneumatic pipe with lumped parameters was developed using ordinary differential equations, which can be easily implemented in most computer programs for the simulation of complex heterogeneous engineering systems. Implemented in Matlab-Simulink software, the computer model of the pipe makes it possible to determine the influence of capacitance, inertance, resistance and heat exchange on the dynamic characteristics of the control and power circuits of pneumatic systems. An advantage of the model is that various functions can be selected to describe linear resistances and local resistances are taken into account, particularly at the inlet and outlet. Such resistances largely affect flow resistances in short tubes (up to 10 m) that can be found, e.g., in pneumatic brake systems of road vehicles. Confirmed by Kolmogorov-Smirnov test results, the consistency of the pressure curves obtained in experimental and simulation tests proves the implemented tube model to be useful for the calculations of pneumatic system dynamics.


Sign in / Sign up

Export Citation Format

Share Document