Meshing Method of High Precision FEM in Large Complex Structural Simulations

2012 ◽  
Vol 195-196 ◽  
pp. 701-704
Author(s):  
Yan Hua Xue ◽  
Zhi Guang Wang ◽  
Xiao Hong Li ◽  
Xin Jiang

Shing is playing an important role in the large complex structural FEM simulations; it has a direct effect on calculating precision of structural simulations. For increasing the calculation accuracy and analysis accuracy of complex structure, the finite element meshing problems is proposed on the finite element analysis of large complicated structures. The effects caused by element type, mesh density and intergradations on calculating precision are studied and discussed. A research argues that with length-width ratio of 1~2 and length-thickness ration of 1.5~4.5 of two-dimensional rectangular element, the quality of meshing method of two-dimensional element is above normal. As the height of one-dimensional element is equal to the sum of reinforcing rib height of outer panel and half the thickness of panel, more accurate results can be obtained.

2012 ◽  
Vol 229-231 ◽  
pp. 457-460
Author(s):  
Yan Hua Xue ◽  
Bin Shao ◽  
Zhi Guang Wang ◽  
Xin Jiang

Meshing is playing an important role in the large complex structural FEM simulations; it has a direct effect on calculating precision of structural simulations. For increasing the calculation accuracy and analysis accuracy of complex structure, the finite element meshing problems is proposed on the finite element analysis of large complicated structures. The effects caused by element type, mesh density and intergradations on calculating precision are studied and discussed. A research argues that with length-width ratio of 1~2 and length-thickness ration of 1.5~4.5 of two-dimensional rectangular element, the quality of meshing method of two-dimensional element is above normal. As the height of one-dimensional element is equal to the sum of reinforcing rib height of outer panel and half the thickness of panel, more accurate results can be obtained.


2021 ◽  
Author(s):  
Erik Arthur Bjorkner

This paper describes the benefits of automating Finite Element Analysis (FEA) model generation and analysis in support of large complex structural lifting, handling, turning, and to present the FEA results in a clear and concise configuration for the stakeholders.


2012 ◽  
Vol 569 ◽  
pp. 495-499
Author(s):  
Shuang Shuang Sun ◽  
Fang Wu Jia ◽  
Yong Sheng Ren

The modal analysis of composite thin-walled box beams with double-cell sections is carried out by the finite element software ANSYS. The finite element models are established first for the double-cell composite thin-walled box beams, then the vibration modes of two box beams: Circumferentially Uniform Stiffness (CUS) and Circumferentially Antisymmetric Stiffness (CAS) are calculated and analyzed. The effects of length-width ratio and width-height ratio on the natural frequency and the modal shape of the double-cell composite thin-walled box beams are discussed.


2021 ◽  
Vol 31 (4) ◽  
pp. 345-348
Author(s):  
Yasuhide Tsuji ◽  
Keita Morimoto ◽  
Akito Iguchi ◽  
Tatsuya Kashiwa ◽  
Shinji Nishiwaki

Author(s):  
Y Xu ◽  
B Liu ◽  
J Liu ◽  
S Riemenschneider

Empirical mode decomposition (EMD) is a powerful tool for analysis of non-stationary and nonlinear signals, and has drawn significant attention in various engineering application areas. This paper presents a finite element-based EMD method for two-dimensional data analysis. Specifically, we represent the local mean surface of the data, a key step in EMD, as a linear combination of a set of two-dimensional linear basis functions smoothed with bi-cubic spline interpolation. The coefficients of the basis functions in the linear combination are obtained from the local extrema of the data using a generalized low-pass filter. By taking advantage of the principle of finite-element analysis, we develop a fast algorithm for implementation of the EMD. The proposed method provides an effective approach to overcome several challenging difficulties in extending the original one-dimensional EMD to the two-dimensional EMD. Numerical experiments using both simulated and practical texture images show that the proposed method works well.


2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.


1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


Sign in / Sign up

Export Citation Format

Share Document