Rate Compatible LDPC Codes Design for Shallow Water Acoustic Communications

2012 ◽  
Vol 198-199 ◽  
pp. 1609-1614
Author(s):  
You Gan Chen ◽  
Xiao Mei Xu ◽  
Lan Zhang

The fast temporal variations shallow water acoustic (SWA) channels need the temporal variations channel coding scheme at the acceptable cost. Hence, flexible channel coding rate, adjusted according to different ocean channel characteristics, should be desired in the design of practical error control SWA communication system. In this paper, we propose rate-compatible LDPC (RC-LDPC) codes to improve the communication system reliability for SWA communications. The proposed SWA system adopting RC-LDPC codes consists of three important preprocessing: channel state information (CSI) estimator, signal-to-noise ratio (SNR) estimator and RC-LDPC pattern. For the estimation error, we define and derive the sensitivity to imperfect CSI and imperfect SNR. Then the design of RC-LDPC codes and SWA channel profile are described. Furthermore, the RC-LDPC performance pattern is given and sensitivity to estimation error of CSI and SNR are analyzed via simulation. It is shown that RC-LDPC codes have good performances with wide range of rates in SWA channels. Finally, coding rate distributions of RC-LDPC codes in different SNR at BER below 10-4 for SWA channel are investigated.

2012 ◽  
Vol 2 (2) ◽  
pp. 53-58
Author(s):  
Shaikh Enayet Ullah ◽  
Md. Golam Rashed ◽  
Most. Farjana Sharmin

In this paper, we made a comprehensive BER simulation study of a quasi- orthogonal space time block encoded (QO-STBC) multiple-input single output(MISO) system. The communication system under investigation has incorporated four digital modulations (QPSK, QAM, 16PSK and 16QAM) over an Additative White Gaussian Noise (AWGN) and Raleigh fading channels for three transmit and one receive antennas. In its FEC channel coding section, three schemes such as Cyclic, Reed-Solomon and ½-rated convolutionally encoding have been used. Under implementation of merely low complexity ML decoding based channel estimation and RSA cryptographic encoding /decoding algorithms, it is observable from conducted simulation test on encrypted text message transmission that the communication system with QAM digital modulation and ½-rated convolutionally encoding techniques is highly effective to combat inherent interferences under Raleigh fading and additive white Gaussian noise (AWGN) channels. It is also noticeable from the study that the retrieving performance of the communication system degrades with the lowering of the signal to noise ratio (SNR) and increasing in order of modulation.


2012 ◽  
Vol 532-533 ◽  
pp. 1135-1139
Author(s):  
Dan Hu

Low-Density Parity-Check(LDPC) codes are a class of channel codes based on matrix encoding and iterative decoding. It has low decoding complexity as well as capacity approaching performance. Until now, the best designed LDPC codes can achieve the performance within only 0.0045dB of the Shannon limit. With the in-depth study, the encoding complexity of LDPC codes is not a difficult problem for application any more. Today, we can see LDPC codes widely used in many practical systems, such as wireless communication system, deep-space communication system, optical-fiber communication system and media storage system. This thesis first introduces the development of channel coding, and then the basic principles and concepts of LDPC codes. The following parts discuss several techniques of LDPC codes, including the construction methods of low-density parity matrix, the iterative decoding algorithms and performance analysis methods. Besides, we propose our opinions and our improved algorithms.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1392
Author(s):  
Zhiping Xu ◽  
Lin Wang ◽  
Shaohua Hong

In this paper, a joint early stopping criterion based on cross entropy (CE), named joint CE criterion, is presented for double-protograph low-density parity-check (DP-LDPC) codes-based joint source-channel coding (JSCC) systems in images transmission to reduce the decoding complexity and decrease the decoding delay. The proposed early stopping criterion adopts the CE from the output likelihood ratios (LLRs) of the joint decoder. Moreover, a special phenomenon named asymmetry oscillation-like convergence (AOLC) in the changing process of CE is uncovered in the source decoder and channel decoder of this system meanwhile, and the proposed joint CE criterion can reduce the impact from the AOLC phenomenon. Comparing to the counterparts, the results show that the joint CE criterion can perform well in the decoding complexity and decoding latency in the low–moderate signal-to-noise ratio (SNR) region and achieve performance improvement in the high SNR region with appropriate parameters, which also demonstrates that this system with joint CE is a low-latency and low-power system.


Author(s):  
Reda Benkhouya ◽  
Idriss Chana ◽  
Youssef Hadi

Channel coding is commonly based on protecting information to be communicated across an unreliable medium, by adding patterns of redundancy into the transmission path. Also referred to as forward error control coding (FECC), the technique is widely used to enable correcting or at least detecting bit errors in digital communication systems. In this paper we study an original FECC known as polar coding which has proven to meet the typical use cases of the next generation mobile standard. This work is motivated by the suitability of polar codes for the new coming wireless era. Hence, we investigate the performance of polar codes in terms of bit error rate (BER) for several codeword lengths and code rates. We first perform a discrete search to find the best operating signal-to-noise ratio (SNR) at two different code rates, while varying the blocklength. We find in our extensive simulations that the BER becomes more sensitive to operating SNR (OSNR) as long as we increase the blocklength and code rate. Finally, we note that increasing blocklength achieves an SNR gain, while increasing code rate changes the OSNR domain. This trade-off sorted out must be taken into consideration while designing polar codes for high-throughput application.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1106
Author(s):  
Vladimir L. Petrović ◽  
Dragomir M. El Mezeni ◽  
Andreja Radošević

Quasi-cyclic low-density parity-check (QC–LDPC) codes are introduced as a physical channel coding solution for data channels in 5G new radio (5G NR). Depending on the use case scenario, this standard proposes the usage of a wide variety of codes, which imposes the need for high encoder flexibility. LDPC codes from 5G NR have a convenient structure and can be efficiently encoded using forward substitution and without computationally intensive multiplications with dense matrices. However, the state-of-the-art solutions for encoder hardware implementation can be inefficient since many hardware processing units stay idle during the encoding process. This paper proposes a novel partially parallel architecture that can provide high hardware usage efficiency (HUE) while achieving encoder flexibility and support for all 5G NR codes. The proposed architecture includes a flexible circular shifting network, which is capable of shifting a single large bit vector or multiple smaller bit vectors depending on the code. The encoder architecture was built around the shifter in a way that multiple parity check matrix elements can be processed in parallel for short codes, thus providing almost the same level of parallelism as for long codes. The processing schedule was optimized for minimal encoding time using the genetic algorithm. The optimized encoder provided high throughputs, low latency, and up-to-date the best HUE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ibtissame Khaoua ◽  
Guillaume Graciani ◽  
Andrey Kim ◽  
François Amblard

AbstractFor a wide range of purposes, one faces the challenge to detect light from extremely faint and spatially extended sources. In such cases, detector noises dominate over the photon noise of the source, and quantum detectors in photon counting mode are generally the best option. Here, we combine a statistical model with an in-depth analysis of detector noises and calibration experiments, and we show that visible light can be detected with an electron-multiplying charge-coupled devices (EM-CCD) with a signal-to-noise ratio (SNR) of 3 for fluxes less than $$30\,{\text{photon}}\,{\text{s}}^{ - 1} \,{\text{cm}}^{ - 2}$$ 30 photon s - 1 cm - 2 . For green photons, this corresponds to 12 aW $${\text{cm}}^{ - 2}$$ cm - 2 ≈ $$9{ } \times 10^{ - 11}$$ 9 × 10 - 11 lux, i.e. 15 orders of magnitude less than typical daylight. The strong nonlinearity of the SNR with the sampling time leads to a dynamic range of detection of 4 orders of magnitude. To detect possibly varying light fluxes, we operate in conditions of maximal detectivity $${\mathcal{D}}$$ D rather than maximal SNR. Given the quantum efficiency $$QE\left( \lambda \right)$$ Q E λ of the detector, we find $${ \mathcal{D}} = 0.015\,{\text{photon}}^{ - 1} \,{\text{s}}^{1/2} \,{\text{cm}}$$ D = 0.015 photon - 1 s 1 / 2 cm , and a non-negligible sensitivity to blackbody radiation for T > 50 °C. This work should help design highly sensitive luminescence detection methods and develop experiments to explore dynamic phenomena involving ultra-weak luminescence in biology, chemistry, and material sciences.


2021 ◽  
Vol 17 (1-2) ◽  
pp. 3-14
Author(s):  
Stathis C. Stiros ◽  
F. Moschas ◽  
P. Triantafyllidis

GNSS technology (known especially for GPS satellites) for measurement of deflections has proved very efficient and useful in bridge structural monitoring, even for short stiff bridges, especially after the advent of 100 Hz GNSS sensors. Mode computation from dynamic deflections has been proposed as one of the applications of this technology. Apart from formal modal analyses with GNSS input, and from spectral analysis of controlled free attenuating oscillations, it has been argued that simple spectra of deflections can define more than one modal frequencies. To test this scenario, we analyzed 21 controlled excitation events from a certain bridge monitoring survey, focusing on lateral and vertical deflections, recorded both by GNSS and an accelerometer. These events contain a transient and a following oscillation, and they are preceded and followed by intervals of quiescence and ambient vibrations. Spectra for each event, for the lateral and the vertical axis of the bridge, and for and each instrument (GNSS, accelerometer) were computed, normalized to their maximum value, and printed one over the other, in order to produce a single composite spectrum for each of the four sets. In these four sets, there was also marked the true value of modal frequency, derived from free attenuating oscillations. It was found that for high SNR (signal-to-noise ratio) deflections, spectral peaks in both acceleration and displacement spectra differ by up to 0.3 Hz from the true value. For low SNR, defections spectra do not match the true frequency, but acceleration spectra provide a low-precision estimate of the true frequency. This is because various excitation effects (traffic, wind etc.) contribute with numerous peaks in a wide range of frequencies. Reliable estimates of modal frequencies can hence be derived from deflections spectra only if excitation frequencies (mostly traffic and wind) can be filtered along with most measurement noise, on the basis of additional data.


Sign in / Sign up

Export Citation Format

Share Document