A Practical Design Method for Energy Dissipation Structure

2012 ◽  
Vol 204-208 ◽  
pp. 1150-1153
Author(s):  
Min Chen ◽  
Guo Jing He ◽  
Chang Liu

Energy dissipation structure is favored by designers because the earthquake energy can be dissipated by the dampers, which can avoid or reduce the damage caused by earthquake. However, the energy dissipation structure design is complex and the most domestic designers can not master it easily. In this paper, a simple and practicable design method for viscous damper dissipation structure by using the PKPM design software is proposed based on a 7-storey frame structure in highly seismic region. Firstly, lower half or one degree for the design intensity to design out an uncontrolled structure. Secondly, determine the supplemental damping ratio required for the fortification intensity via modal analysis method of PKPM software, and identify the numbers of the required dampers as well as their corresponding installation positions in line with the methods in the seismic code of China. Finally, the ETABS program is adopted to conduct the time-history analysis of the designed dissipation structure, showing that the proposed method in this paper can produce a satisfied result.

2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


2014 ◽  
Vol 638-640 ◽  
pp. 1785-1788 ◽  
Author(s):  
Jie Wang ◽  
Yu Bai

Chinese seismic code provision, for the energy dissipation structure, when the main structure into elastic-plastic stage, the system should be based on characteristics of the main structure, the use of static elastoplastic analysis and nonlinear time history analysis methods. In this paper, the static elastoplastic and elastic-plastic time history method of analysis and comparison to speed, such as type viscous damper type damper is not applicable to the static elastoplastic analysis.


2020 ◽  
pp. 136943322098273
Author(s):  
Baoxi Song ◽  
Weizhi Xu ◽  
Dongsheng Du ◽  
Shuguang Wang ◽  
Weiwei Li ◽  
...  

This paper provides a practical design method for hybrid unbonded post-tensioned precast concrete joints. Such joints featured with self-centering capacities have been widely favored in recent years. However, the absence of design methods hinders their further promotion. To solve the issue, two methods for calculating mechanical behavior of the joints were first studied: characteristic points method and iterative method. The effectiveness of the methods was verified by the existing test results. On this basis, a joint design method considering both yield bearing capacity and energy dissipation capacity was proposed. Moreover, to facilitate design, some factors affecting the bearing capacity were discussed. A five-story frame structure was designed by the proposed design method, and the influence of two design factors on structural response was analyzed by utilizing nonlinear time-history method. The analysis results show that: with the increase of energy dissipation factor αs, the post-earthquake residual deformation of the structure tends to increase linearly, while the accumulated damage of the structure will decrease continuously; both overdesign and underdesign of bearing capacity of the joint are unfavorable; and near-field earthquake may cause irreparable damage to structural columns, making the residual deformation of structures contrary to the self-centering capacity of joints, which shall be considered during engineering design.


2013 ◽  
Vol 275-277 ◽  
pp. 1553-1559
Author(s):  
Qiang Zhang ◽  
Wen Guang Liu ◽  
Wen Fu He ◽  
Yang Liu

The design and analysis procedures of a viscous damping wall for a tall shear wall-frame structure in a high seismic region are briefly introduced. Design method and theoretical basis of viscous damping wall are described, and then the layout scheme is put forward. Under frequent and rare earthquake action, the analysis results of damping structure show that the responses can be reduced perfectly. The maximum story drift angle of viscous damping structure can satisfy the limitations of the seismic code and the additional damping ratio is increased to 3%, all of them can satisfy the target of damping performance.


2013 ◽  
Vol 639-640 ◽  
pp. 882-885
Author(s):  
Min Chen ◽  
Guo Jing He ◽  
Chang Liu

A certain amount of viscous dampers are installed in the 10-storey frame structure in line with different distribution strategies, and then 2 sets of strong earthquake records and 1 set of artificial acceleration time-history curve are selected to conduct the time-history analysis under both frequently and rarely earthquakes via ETABS software. Based on the comparison of the time-history analysis results in various working cases, the ideal energy dissipation results can be obtained when the dampers are installed in the lower stories with a larger storey drift, which also help to utilize the upper space of the structure. The time-history analysis shows that the viscous dampers installed in the lower part of a building have a better effectiveness of vibration isolation than those in the upper parts, and it is no necessary to install too many dampers, for the energy dissipation effects tend to be steady when the number of dampers has been increased to a level.


2011 ◽  
Vol 71-78 ◽  
pp. 1444-1450
Author(s):  
Wen Zheng Zhu ◽  
Zhong Gen Xu

The process and thought for the approach bridge of Suiwei bridge design using the method of isolation and energy dissipation were proposed in this paper. The concept of protecting a bridge from the damaging effects of an earthquake by introducing isolating bearings to isolate it from the moving ground is an attractive one. Firstly, the sizes of the laminated rubber bearings and the dia- meters of lead plugs are calculated with static analysis. Then the internal forces of the piers and the damping ratio of the isolated bridge needed to restrict the seismic deformation to 8cm during earth- quakes with seldom intensity were calculated using the Response Spectrum Method, and the result verified with dynamic time history method demonstrates that the Response Spectrum Design Method can restrict the girder displacement to 8cm during large earthquake and reach the goal of 25 percent shock reduction. The design process can be of reference to the bridge design with isolation and energy dissipation.


2011 ◽  
Vol 105-107 ◽  
pp. 1020-1026
Author(s):  
Yu Hong Ling ◽  
Hong Hua Ling ◽  
Jing Zhuang Wu ◽  
Chan Yuan Huangfu

According to one three-story RC frame structure, the results of time-history analysis of using re-centring SMA damper to seismic retrofitting are introduced in detail. Damping effect of dampers is studied by index such as floor displacement, story drift, story shear force, energy dissipation, etc., and optimal layout of dampers is also discussed. The analysis results indicate that floor displacement and story drift are decreased greatly after strengthening, and story shear force is controlled to some extent with good effect. The damper dissipates most of the total energy inputting into structure and also has good ability to re-centring. The damper can obtain good energy dissipation when arranged at the maximum story drift, and less energy dissipation when arranged at the smaller story drift.


2013 ◽  
Vol 838-841 ◽  
pp. 1609-1612
Author(s):  
Pei Jiang Pan

The energy dissipation design method has received more attention by engineering circle. Nowadays, the buckling restrained braces (BRBs) are used in higher structures being dissipation energy components. So, it is very necessary to determine the damage quantity of BRBs under earthquake. Firstly, the meaning of the damage quantity of BRBs is clarified based on the energy theory. Secondly, a single degree of freedom analyses model which is suitable to the frame structure is proposed. The nonlinear dynamic time-history analysis of BRBs system is carried out by using FEMS software of ANSYS 11.0 and seismic response of BRBs is obtained. Finally, a practical calculation model of the Damage quantity of BRBs is established. Using MATLAB software, the Damage quantity of BRBs is obtained.


2011 ◽  
Vol 368-373 ◽  
pp. 777-780
Author(s):  
Dong Qiang Xu ◽  
Pin Li

This paper is concerned with the study on internal forces of structure by building model in ANSYS under unidirectional seismic wave, bi-directional seismic waves and two-way and reverse seismic wave. The results revealed that the moment effect of frame structure under bi-directional seismic waves and two-way and reverse seismic wave is bigger around 30% than it under unidirectional seismic wave. And the torque accretion multiple of irregular structure is bigger around 1 than the corresponding regular structure. Therefore, we should take into account the effect of multi-dimensional seismic and the torsional effect of the irregular structure in structure design.


2013 ◽  
Vol 353-356 ◽  
pp. 979-983
Author(s):  
Dong Zhang ◽  
Jing Bo Su ◽  
Hui De Zhao ◽  
Hai Yan Wang

Due to the upgrade and reconstruct of a high-piled wharf, the piling construction may cause the damage of the large diameter underground pipe of a power plant nearby. For this problem, a dynamic time-history analysis model was established using MIDAS/GTS program. Based on the analysis of the pile driving vibration and its propagation law, some parameters, such as the modulus of the soil, the Poissons ratio of soil, the action time of vibration load and the damping ratio of the soil that may have an effect on the response law of the soil, were studied. The study results not only serve as an important inference to the construction of this case, but also accumulate experience and data for other similar engineering practices.


Sign in / Sign up

Export Citation Format

Share Document