Experimental Studies on CO2 Absorption in Immersed Hollow Fiber Membrane Contactor

2012 ◽  
Vol 209-211 ◽  
pp. 1571-1575 ◽  
Author(s):  
Xiao Na Wu ◽  
Liang Wang ◽  
Zhao Hui Zhang ◽  
Wen Yang Li ◽  
Xing Fei Guo

Carbon dioxide (CO2) absorption performance from flue gas was investigated using monoethanolamine (MEA) solution in porous hydrophobic polyvinylidene fluoride (PVDF) hollow fiber membranes contactor. The influence of operating parameters on CO2 removal efficiency and flux were studied in the immersion operating mode. The experimental results indicated that the CO2 removal efficiency and flux decreased with the increase of flue gas load and carbonization degrees, but the increase of the absorbent concentration and temperature promoted membrane performance of CO2 capture. An increase of 84 m3•m-2•h-1 in the flue gas load resulted in a 68% decrease in the removal efficiency. Absorbent carbonation degree increased to 0.45 mol CO2•mol-1MEA led to the decrease of active ingredient amounts in the absorption solution, and the corresponding removal efficiency and membrane flux dropped by 50% of the initial amounts, respectively. The increase of concentration and temperature of absorbent also benefited membrane absorption performance of CO2 absorption, so that the concentration and temperature of the solvent increased lead to the CO2 removal efficiency and flux increased.

Author(s):  
Hyun Sic Park ◽  
Dongwoan Kang ◽  
Jo Hong Kang ◽  
Kwanghwi Kim ◽  
Jaehyuk Kim ◽  
...  

Hollow fiber membrane contactors (HFMCs) provide a large specific surface area. Thus, their significantly reduced volume provides an advantage compared to the conventional gas–liquid contactor. In this study, the selective removal efficiency of flue gas, in which sulfur oxide (SO2) and carbon dioxide (CO2) coexist, was measured using a polypropylene (PP) HFMC with such advantages. To increase the selective removal efficiency of SO2, experiments were conducted using various alkaline absorbents. As a result, with 0.05 M ammonia solution, the removal efficiency of 95% or more was exhibited with continuous operation for 100 h or more. We confirmed that the absorbent saturated by the once-through mode was aqueous ammonium sulfate ((NH4)2SO4) solution and could be used as a fertilizer without additional processing.


2011 ◽  
Vol 45 (8) ◽  
pp. 2627-2637 ◽  
Author(s):  
Anh H. Nguyen ◽  
John E. Tobiason ◽  
Kerry J. Howe

2007 ◽  
Vol 56 (12) ◽  
pp. 111-118 ◽  
Author(s):  
Tang Li ◽  
Tan Xue-jun ◽  
Cui Fu-yi ◽  
Zhou Qi ◽  
Yin Jun

The particles from carwash wastewater were separated by a hollow fiber membrane aided by a enhanced coagulation and activated carbon. This study demonstrated that the addition of KMnO4 to coagulant (PAC) could enhance the efficiency of coagulation, which helped reduce clogging of the ultrafiltration membrane and activated carbon. The existence of LAS can loosen the gel layer on the membrane and improve the flux. Adsorption of particles such as organic matter and oil is the main reason causing membrane flux decrease. When carwash wastewater was pretreated, the permeation flux of membrane showed a higher value. LAS, odour and colour are removed by GAC adsorption treatment at last. The COD, BOD, LAS and oil of reuse water was 33.4 mg/L, 4.8 mg/L, 0.06 mg/L and 0.95 mg/L, respectively.


2016 ◽  
Vol 73 (9) ◽  
pp. 2159-2167 ◽  
Author(s):  
Huyan Shi ◽  
Lixin Xue ◽  
Ailin Gao ◽  
Qingbo Zhou

Dual layer polyvinylidene fluoride (PVDF), antibacterial, hollow fiber, ultra-filtration composite membranes with antibacterial particles (silver (Ag) nano-particles loaded zeolite (Z-Ag)) in the outer layer were prepared with high water flux and desired pore sizes. The amounts of Ag+ released from the composite membranes, freshly made and stored in water and salt solution, were measured. The result indicated that dual layer PVDF antibacterial hollow fiber containing Z-Ag (M-1-Ag) still possessed the ability of continuous release of Ag+ even after exposure to water with high ionic content, showing a longer term resistance to bacterial adhesion and antibacterial activity than membrane doped with Z-Ag+ (M-1). Results from an anti-adhesion and bacteria killing test with Escherichia coli supported that the antibacterial efficiency of dual hollow fiber PVDF membranes with Z-Ag was much higher than those with Z-Ag+ after long time storage in water or exposure to phosphate buffered saline (PBS) solution. This novel hollow fiber membrane may find applications in constructing sea water pretreatment devices with long term antifouling capability for the desalination processes.


2007 ◽  
Vol 88 (5) ◽  
pp. 501-511 ◽  
Author(s):  
Shui-ping Yan ◽  
Meng-Xiang Fang ◽  
Wei-Feng Zhang ◽  
Shu-Yuan Wang ◽  
Zhi-Kang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document