Effects of Mineral Admixtures on Carbonation and Chloride Ingress of Concrete

2012 ◽  
Vol 212-213 ◽  
pp. 878-882 ◽  
Author(s):  
Abuduhelili Haibier ◽  
Yong Xin Wu

Reinforcement corrosion is one important factor affecting the durability and safety of reinforced concrete structures. Concrete carbonation and chloride ion penetration is the main cause leading to steel corrosion, also important indicators affecting the service life of concrete structures. An accelerated carbonation experiment and Chloride penetration experiment was carried out on ordinary Portland cement (OPC) concrete and admixture concrete in various conditions. Eight concrete specimens of different mixture properties were tested in experiment. Resistance of OPC concrete system with and without mineral admixture (fly ash, slag) and air-entraining agent against carbonation was investigated. Besides, the influence of mineral admixture on the chloride penetration was also studied. The carbonation process and the factors affecting concrete carbonation are discussed according to test results. The test results were presented and they were in good agreement with the results of previous research.

2013 ◽  
Vol 831 ◽  
pp. 3-8
Author(s):  
Suad Khalid Al-Bahar ◽  
Safaa M. Abdul Salam ◽  
Adel M. Husain

Improving concrete performance and minimizing corrosion-induced deterioration of reinforced concrete structures are mandated Building Codes Practices and Specifications in arid regions such as the Arabian Gulf. Concrete structures resist corrosion due to the passivating properties of the hydrated cement around the steel reinforcement created by the high alkaline environment within the composite structure (pH > 12). However, the presence of chloride ions in the pore structure of the concrete destroys this passivating layer, which makes the steel reinforcement vulnerable to chloride-induced corrosion attack that accelerates degradation and deterioration of concrete structures. Corrosion activities-related tests such as Time-to-Corrosion Initiation (Modified ASTM G-109)6, and Corrosion Rate Test (Lollipop Test), can be effectively used to monitor the behavior of corrosion development, while chloride ingress characteristics tests such as Electrical Indication of Concretes Ability to Resist Chloride Ion Penetration ASTM C-1202-91)7, and the Resistance of Concrete to Chloride Ion Penetration (AASHTO T 259-80)8, are applied to evaluate the rate at which chloride ions can diffuse through concrete to onset the time-to-corrosion initiation, which will impact the structure service life and compromise its sustainability. Efforts have been made by scientists to develop mathematical simulation models that predict the service life of the structure based on Ficks Second Law for semi-finite diffusion of chloride ions, concentrated at different concrete depths. The study concluded that mineral admixtures have contributed to the enhancement of concrete performance and its resistance to chloride diffusivity, as well when in combination with corrosion-inhibiting admixture such as calcium nitrite.


2013 ◽  
Vol 857 ◽  
pp. 105-109
Author(s):  
Xiu Hua Zheng ◽  
Shu Jie Song ◽  
Yong Quan Zhang

This paper presents an experimental study on the permeability and the pore structure of lightweight concrete with fly ash, zeolite powder, or silica fume, in comparison to that of normal weight aggregate concrete. The results showed that the mineral admixtures can improve the anti-permeability performance of lightweight aggregate concrete, and mixed with compound mineral admixtures further more. The resistance to chloride-ion permeability of light weight concrete was higher than that of At the same strength grade, the anti-permeability performance of lightweight aggregate concrete is better than that of normal weight aggregate concrete. The anti-permeability performance of LC40 was similar to that of C60. Mineral admixtures can obviously improve the pore structure of lightweight aggregate concrete, the total porosity reduced while the pore size decreased.


2015 ◽  
Vol 1111 ◽  
pp. 187-192
Author(s):  
Corina Sosdean ◽  
Liviu Marsavina ◽  
Geert de Schutter

Reinforced concrete (RC) became one of the most widely used modern building materials. In the last decades a great interest has been shown in studying reinforcement corrosion as it became one of the main factors of degradation and loss of structural integrity of RC structures. The degradation process is accelerated in the case of RC structures situated in aggressive environments like marine environments or subjected to de-icing salts. In this paper it is shown how steel corrosion of the embedded rebars occurs and how this affects the service life of reinforced concrete structures. Also, an experimental study regarding the combined effect of carbonation and chloride ingress was realized. Samples with and without rebars were drilled from a RC slab which was stored in the laboratory for two years. Non-steady state migration tests were realized in order to determine the chloride profile, while the carbonation depth was measured using the colorimetric method based on phenolphthalein spraying. It was concluded that carbonation has a significant effect on chloride ingress, increasing it.


2018 ◽  
Vol 761 ◽  
pp. 127-130
Author(s):  
Martina Šomodíková ◽  
Břetislav Teplý ◽  
Dita Vořechovská

The assessment of service life of a structure can be performed via mathematical modelling – either analytical or numerical and it can be viewed as a necessary pre-requisite for life-cycle engineering decisions. Many works concerning the modelling and testing of degradation effects for engineering systems are reported in the literature. The present paper discusses the degradation modelling of reinforced concrete structures and concentrates on the damage they sustain due to chloride ingress, namely a special aspect: the influence of statistical correlation among input variables on the reliability.


Author(s):  
M. Omrane ◽  
A.S. Benosman ◽  
M. Mouli ◽  
Y. Senhadji

This paper presents a study of the resistance to chloride penetration of blended Portland cement mortar containing thermoplastic waste polymer polyethylene terephthalate (TWPET). Composite TWPET-mortars are often presented as the materials of the future in reason of their potential for innovation and advantages that offer. In fact, the use of TWPET percentages as a cement substitution reduces energy costs; address problems related to environmental pollution by CO2 emissions and repairs various reinforced concrete structures. Blended Portland cement (CPJ) is partially replaced with TWPET at the amounts of 2%, 4% and 6% by weight of cementitious materials. Chloride penetration depth of full and partial immersions in 3% NaCl solution, rapid chloride permeability test (RCPT) after 28, 90 and 120 days, sorptivity, leaching test and flexural strength of thermoplastic-mortar composites (TMCs) were determined. Test results reveal that the resistance to chloride penetration of TMCs improves substantially with partial replacement of CPJ with TWPET and without significantly affecting the flexural strength in tap water. The chemical resistance is higher with an increase in the replacement level. So, sorptivity, the chloride ion penetration depth, apparent chloride ion diffusion coefficient, the total charge passed in coulombs and leached depth measurements of the TMCs are much smaller than those of reference mortar. The formations which appear such as different calcium salts were determined by X-ray diffraction. These results take into account the use of waste plastics in the manufacture of mortars modified which can be both recommended for preventing the chloride-induced corrosion of the steel in various reinforced concrete structures and participate greatly in the environment preservation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jae-Im Park ◽  
Kwang-Myong Lee ◽  
Soon-Oh Kwon ◽  
Su-Ho Bae ◽  
Sang-Hwa Jung ◽  
...  

The diffusion coefficient for chloride ions and the diffusion decay coefficient for chloride ions are essential variables for a service life evaluation of concrete structures. They are influenced by water-binder ratio, exposure condition, curing temperature, cement type, and the type and use of mineral admixture. Mineral admixtures such as ground granulated blast furnace slag, fly ash, and silica fume have been increasingly used to improve resistance against chloride ions penetration in concrete structures built in an offshore environment. However, there is not enough measured data to identify the statistical properties of diffusion decay coefficient for chloride ions in concrete using mineral admixtures. This paper is aimed at evaluating the diffusion decay coefficient for chloride ions of concrete using ordinary Portland cement or blended cement. NT BUILD 492 method, an electrophoresis experiment, was used to measure the diffusion coefficient for chloride ions with ages. It was revealed from the test results that the diffusion decay coefficient for chloride ions was significantly influenced by W/B and the replacement ratio of mineral admixtures.


2018 ◽  
Vol 199 ◽  
pp. 02011
Author(s):  
Bjorn Van Belleghem ◽  
Philip Van den Heede ◽  
Kim Van Tittelboom ◽  
Nele De Belie

Cracks in reinforced concrete structures exposed to a marine environment or de-icing salts can cause major durability issues due do accelerated ingress of chloride ions. In this study, the influence of autonomous crack healing by means of encapsulated polyurethane on the chloride ingress perpendicular to cracks was evaluated. This was done quantitatively by determining perpendicular-to-crack chloride profiles by means of profile grinding followed by potentiometric titration and qualitatively through visualization of the chloride penetration front by means of the AgNO3 spray method. The resulting chloride profiles showed that the healing mechanism was able to reduce the chloride concentrations in the direct vicinity of the crack to a large extent and to reduce the perpendicular-to-crack chloride penetration, especially further away from the exposed surface. Visualization of the chloride penetration front showed some variation in crack healing. For some healed samples almost no additional chloride ingress was found compared to uncracked samples, others showed a slightly enhanced ingress at the crack location but less perpendicular-to-crack chloride penetration compared to untreated cracked samples. Generally, the reduced amount of chlorides present in the concrete matrix due to crack healing will enhance the durability and service life of concrete structures.


2016 ◽  
Vol 11 (4) ◽  
pp. 109-130 ◽  
Author(s):  
Ali Mardani-Aghabaglou ◽  
Cihat Yüksel ◽  
Hojjat Hosseinnezhad ◽  
Kambiz Ramyar

Steel micro fibers provide strengthening, toughening and durability improvement mechanisms in cementitious composites. However, there is not much data in the literature regarding how the extent of their effectiveness changes depending on the type of matrix being reinforced. For clarifying this point, the influence of a constant volumetric ratio (1%) of 6 mm long steel micro fibers on the performance of 5 mortar mixtures was investigated and were prepared using plain, binary and ternary cementitious systems. A total of 10 mixtures were cast. The mineral admixtures used in the study include silica fume (SF), metakaolin (MK) and a Class C fly ash (FA). While the replacement levels of SF and MK were 10% by weight of the total mass of the binder, this ratio was chosen as 30% for FA. In addition to the behavior of the mixtures under compressive, flexural and impact loads, abrasion, water absorption, chloride ion penetration, freezing-thawing resistance and drying shrinkage characteristics of the mixtures were determined. Test results indicate that generally the refinement in the pore structure of the matrix provided by mineral admixtures and the increase in resistance against growth and coalescence of micro-cracks provided by fibers produce a synergistic effect and improve the investigated performances of the mixtures.


2003 ◽  
Vol 1 (2) ◽  
pp. 147-160 ◽  
Author(s):  
Tsuyoshi Maruya ◽  
Kailin Hsu ◽  
Hitoshi Takeda ◽  
Somnuk Tangtermsirikul

2012 ◽  
Vol 166-169 ◽  
pp. 1946-1953
Author(s):  
Xin Gang Zhou ◽  
Fang Zhao

According to investigations of apparent surface chloride contents and chloride penetration profile of concrete structures exposed to chloride environment, the influences of boundary and initial conditions, geometry parameters such as the geometry dimension and section shape, etc. were discussed. Based on the Fick’s second law of diffusion and different boundary and initial conditions, different analytical models to predict the chloride penetration profile in concrete structural members with different boundary and initial conditions were derived. Some calculations examples were made using those analytical models. Computational results show that the boundary and initial conditions have remarkable influences on chloride penetration profile and service life time of concrete structures. Using prevailing error-function solution model based on the semi-infinite assumption of chloride ingress, the prediction of service life time of concrete structures are over evaluated, in particular for the steel reinforcement in corner of the section. Some modify coefficients should be taken into consideration, concerning the influences of boundary and initial conditions.


Sign in / Sign up

Export Citation Format

Share Document