Study of Bulging-Pressing Compound-Deforming Automobile Axle Housing with a Common Press

2012 ◽  
Vol 217-219 ◽  
pp. 1972-1977
Author(s):  
Lian Dong Wang ◽  
Ya Ping Cui ◽  
Dong Feng Yang

The conventional hydroforming process for automobile axle housing needs a large-tonnage press and has the drawback of the dome part being apt to burst due to the large thinning. A new forming technology, bulging-pressing compound-deforming for automobile axle housing, is proposed, which is suitable for the large variable-diameter tube parts with special-shaped cross-sections. The initial tube is made into the axisymmetric peforming tube after the ends necked and the middle hydroformed, and which then is pressed into the axle housing sample by the dies. For a small automobile axle housing, the process tryout and the pressing dies were designed, and the axle housing samples were successfully produced with a common press. Compare with the conventional hydroforming process, the forming corner radiuses of present samples are smaller and the internal pressure decreased 60%. The results show that the process has the advantages of good corner-filling ability and low internal hydraulic pressure.

2018 ◽  
Vol 14 (1) ◽  
pp. 52-66
Author(s):  
Rusul AbdulKareem Salman ◽  
Hani Aziz Ameen ◽  
Kadhim Mijbel Mashloosh

To observe the effect of media of the internal pressure on the equivalent stress distribution in the tube, an experimental study is done by constructing a testing rig to apply the hydraulic pressure and three dies are manufactured with different bulging configurations (square, cosine, and conical). In the other part, ANSYS APDL is generated to analyze the bulging process with hydraulic and rubber (natural and industrial) media. It was found that when the media is a rubber, the stress is decreased about 9.068% in case of cosine die and 5.4439% in case of conical die and 2.8544% in case of square die. So, it can be concluded that the internal pressure in the rubber media is much better than in hydraulic media. Also, the force needed for forming the shape using rubber is higher than that of hydraulic and the force needed to form using industrial rubber is higher than of natural rubber. The thickness distribution in the tube wall in case of rubber media is better than that for hydraulic media and for the industrial rubber is better than that for natural rubber for the same dies. In case of hydraulic, the lower forming pressure is needed to bulging process compared with the rubber media since height stress in the tube metal is existed, which causes the failure.   For the case of rubber, the forming pressure that was needed to bulge process is higher when compared with the hydraulic media but with less stress in tube metal and the failure in the wall is not existed with rubber media for the same pressure of hydraulic.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
AR. Veerappan ◽  
S. Shanmugam ◽  
S. Soundrapandian

Thinning and ovality are commonly observed irregularities in pipe bends, which induce higher stress than perfectly circular cross sections. In this work, the stresses introduced in pipe bends with different ovalities and thinning for a particular internal pressure are calculated using the finite element method. The constant allowable pressure ratio for different ovalities and thinning is presented at different bend radii. The allowable pressure ratio increases, attains a maximum, and then decreases as the values of ovality and thinning are increased. An empirical relationship to determine the allowable pressure in terms of bend ratio, pipe ratio, percent thinning, and percent ovality is presented. The pipe ratio has a strong effect on the allowable pressure.


2007 ◽  
Vol 340-341 ◽  
pp. 353-358 ◽  
Author(s):  
M. Loh-Mousavi ◽  
Kenichiro Mori ◽  
K. Hayashi ◽  
Seijiro Maki ◽  
M. Bakhshi

The effect of oscillation of internal pressure on the formability and shape accuracy of the products in a pulsating hydroforming process of T-shaped parts was examined by finite element simulation. The local thinning was prevented by oscillating the internal pressure. The filling ratio of the die cavity and the symmetrical degree of the filling was increased by the oscillation of pressure. The calculated deforming shape and the wall thickness are in good agreement with the experimental ones. It was found that pulsating hydroforming is useful in improving the formability and shape accuracy in the T-shape hydroforming operation.


Author(s):  
A. P. Oliinyk ◽  
B. S. Nezamay ◽  
L. I. Feshanych

The task of estimating the stress-strain state of pipelines through which gas-liquid mixtures with aggressive components are transported is considered, the purpose, object and object of research are established. The analysis of the current state of scientific and technical researches on the given subject is carried out, the circle of unresolved problems is revealed. The combined effect on the pipelines through which gas-liquid mixtures with aggressive components are transported stress – strained state change  is estimated by two models - the model for determining the change of the stress-strain state of the pipeline by data on the surface points certain set displacement   taking into account the quasi-stationarity of the process. The device uses interpolation smoothing splines and methods of differential geometry, 6 components of strain and stress tensors are determined. In order to substantiate the method of estimation of annular stresses at the wear of the pipeline walls due to the action of the aggressive components of the transported mixtures, systems of equilibrium equations for pipeline sections and for quasi-rectilinear sections with altered cross-section configuration have been derived. Boundaryt conditions for equilibrium equations are established. Calculation formulas for estimation of annular stresses arising under the action of internal pressure for sections with shape defects caused by the action of aggressive components are established. The results of calculations that allow to quantify the change of the most significant ring stresses arising in the pipeline material under the action of internal pressure in the pipeline cross sections, which were exposed to the aggressive components, are presented. It is assumed that the deformed sections are little different from the shape of the circle.


2021 ◽  
pp. 1-18
Author(s):  
Mingyue Lu ◽  
Guangming Chen ◽  
Qingsong He ◽  
Weijia Zong ◽  
Zhiwei Yu ◽  
...  

Abstract Geckos can climb freely on various types of surfaces using their flexible and adhesive toes. Gecko-inspired robots are capable of climbing on different surface conditions and have shown many important applications. Nonetheless, due to poor flexibility of toes the movements of gecko-inspired robots are restricted to flat surfaces. To improve the flexibility, by utilizing design technique of soft actuator and incorporating the characteristics of a real gecko's toe, the design of new bionic soft toes is proposed. The abilities of this bionic toe are verified using modelling and two soft toes are manufactured. One is Type A toe having varied semi-circle cross-sections as the feature of real gecko toe and the other is Type B toe with a constant semi-circle cross-section. The bending behaviors of the bionic toes subjected to a range of hydraulic pressure are also experimentally studied. It demonstrated that both toes can perform similarly large bending angles for the adduction (attachment) and abduction (detachment) motions. In comparisons, Type B toe exhibits larger output force, which is ascribed to the fact that at proximal section of Type B corresponds to larger volume for bearing fluid. Both toes can not only provide sufficient adhesion, but can be quickly detached with low peeling forces. Finally, different curved surfaces are used to further justify the applicability of these bionic toes. In particular, the flexible toes developed also have the advantages of low cost, lightweight, and simple control, which is desirable for wall-climbing robots.


2000 ◽  
Author(s):  
J. Y. Chen ◽  
Z. C. Xia ◽  
S. C. Tang

Abstract Hydroforming process provides important advantages for automotive structural components over conventional stamp-and-weld parts, but it also brings unique challenges in process design. This paper attempts to obtain fundamental understanding of the process through corner fill modeling. A round tube is pressurized to expand into a square box with tight radius in the numerical experiment. Several parameters are identified and investigated during the process, namely, the internal pressure, end feed, and the lubricant. Their effects on the deformation profiles are presented, and their importance in process design is discussed. The established design guidelines from the study can be a valuable tool for hydroforming process engineers and part designers.


2012 ◽  
Vol 232 ◽  
pp. 537-540
Author(s):  
Xiao Yu Yang

This paper briefly introduces some problems of tube hydroforming process, at the same time, also uses Ansys software to simulate in tube hydroforming process. And draw an conclusion,To avoid defects in tube hydroforming process, the applied internal pressure must be high enough to suppress buckling but not too high to cause bursting.


2000 ◽  
Author(s):  
G. T. Kridli ◽  
L. Bao ◽  
P. K. Mallick

Abstract The tube hydroforming process has been used in industry for several years to produce components such as exhaust manifolds. Recent advances in forming machines and machine control systems have allowed for the introduction and the implementation of the process to produce several automotive components, which were originally produced by the stamping process. Components such as side rails, engine cradles, space frames, and several others can be economically produced by tube hydroforming. The process involves forming a straight or a pre-bent tube into a die cavity using internal hydraulic pressure, which may be coupled with controlled axial feeding of the tube. One of the remaining challenges facing product and process engineers in designing hydroformed parts is the lack of an extensive knowledge base of the process. This includes a full understanding of the process mechanics and the effects of the material properties on the quality of the hydroformed product. This paper reports on the results of two dimensional plane strain finite element models of the tube hydroforming process, which were conducted using the commercial finite element code ABAQUS/Standard. The objective of the study is to examine the effects of material properties, die geometry, and frictional characteristics on the selection of the hydroforming process parameters. The paper discusses the effects of the strain-hardening exponent, friction coefficient at the die-workpiece interface, initial tube wall thickness, and die corner radii on the thickness distribution of the hydroformed tube.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Ivo Senjanović ◽  
Ivan Áatipović ◽  
Neven Alujević ◽  
Damjan Čakmak ◽  
Nikola Vladimir

In this paper, a finite strip for vibration analysis of rotating toroidal shells subjected to internal pressure is developed. The expressions for strain and kinetic energies are formulated in a previous paper in which vibrations of a toroidal shell with a closed cross section are analyzed using the Rayleigh–Ritz method (RRM) and Fourier series. In this paper, however, the variation of displacements u, v, and w with the meridional coordinate is modeled through a discretization with a number of finite strips. The variation of the displacements with the circumferential coordinate is taken into account exactly by using simple sine and cosine functions of the circumferential coordinate. A unique argument nφ+ω t is used in order to be able to capture traveling modes due to the shell rotation. The finite strip properties, i.e., the stiffness matrix, the geometric stiffness matrix, and the mass matrices, are defined by employing bar and beam shape functions, and by minimizing the strain and kinetic energies. In order to improve the convergence of the results, also a strip of a higher-order is developed. The application of the finite strip method is illustrated in cases of toroidal shells with closed and open cross sections. The obtained results are compared with those determined by the RRM and the finite element method (FEM).


2011 ◽  
Vol 295-297 ◽  
pp. 1699-1704
Author(s):  
Liang Yi ◽  
Lian Fa Yang ◽  
Chen Guo

The formability of the magnesium alloy sheets is poor at room temperature even though the magnesium alloy sheets are attractive because of their excellent characteristics. Hydro-forming technology, especially the pulsating hydro-forming, may be a way to improve the formability. Finite element simulations have been conducted to investigate the formability of AZ31B magnesium alloy sheet in hydro-bugling by pulsating hydraulic pressure. The influence of linear pressure, pulsating pressure and pulsating frequency on the maximum bulging height and minimum wall thickness of the formed parts have been analyzed. The research results show that the formability of AZ31B magnesium alloy sheet can be improved dramatically by pulsating hydro-forming. And enough bugling height can be obtained by lesser forming hydraulic pressure. The AZ31B sheet has an excellent performance in formability when the pulsating frequency is properly selected.


Sign in / Sign up

Export Citation Format

Share Document