Oil Pipeline Leak Detection System Based on Acoustic Wave Technology

2012 ◽  
Vol 220-223 ◽  
pp. 1628-1632
Author(s):  
Li Kun Wang ◽  
Bin Xu ◽  
Hong Chao Wang ◽  
Shi Li Chen ◽  
Jia Yong Wu ◽  
...  

Principle of the pipeline leak detection system is presented, and the leak detection method based on acoustic wave and wavelet analysis is studied in this paper. The dynamic pressure transmitter based on piezoelectric dynamic pressure transducer is designed. The characteristic of dynamic pressure transmitter when pipeline leak happened is analyzed. The dynamic pressure signal is suitable for pipeline leak detection for quick-change of pipeline internal pressure, while the static pressure is suitable for slow-change of pipeline internal pressure. The signal is analyzed by wavelet analysis method to detect the singularity, and the singularity is used to recognize and locate the leak. This paper indicated that the dynamic pressure signal could be adjust to this detection that the pressure changes in the pipeline. Field tests in 68.2 km pipeline segment show that the method detects pipeline leak rapidly and precisely.

Author(s):  
Likun Wang ◽  
Min Xiong ◽  
Jinyun Zhao ◽  
Hongchao Wang ◽  
Bin Xu ◽  
...  

The dynamic pressure transmitter based on piezoelectric dynamic pressure transducer is designed. The characteristic of dynamic pressure transmitter when pipeline leak happened is analyzed. The dynamic pressure signal is suitable for pipeline leak detection for quick-change of pipeline internal pressure, while the static pressure is suitable for slow-change of pipeline internal pressure. This paper indicated that the dynamic pressure signal could be adjust to this detection that the pressure changes quickly in the pipeline. Field tests show that the proposed method detects pipeline leak rapidly and precisely. The field test in 68.2 km pipeline shows that the least detected leakage ratio with dynamic pressure method is 0.6 percent pipeline throughput and location error is 80 m.


Author(s):  
Bin Xu ◽  
Likun Wang ◽  
Hongchao Wang ◽  
Min Xiong ◽  
Dongliang Yu ◽  
...  

Architecture of the leak detection system is presented, and the leak detection method based on dynamic pressure and wavelet analysis is studied in this paper. The feature of dynamic pressure which is generated by the leakage of pipeline is analyzed. The dynamic pressure signal of pipeline internal pressure is acquired by dynamic pressure sensor when leakage occurs, and the signal is analyzed by wavelet analysis method to detect the singularity, and the singularity is used to recognize and locate the leak. From the comparison of analysis results between dynamic pressure and static pressure, in order to improve the sensitivity and stability of the leak detection system, a polling rule between dynamic and static pressure is implemented. Field tests of the leak detection system are presented and analyzed. The results of the field tests demonstrate that the leak detection method based on dynamic pressure and wavelet analysis can detect pipeline leak rapidly and locate the leak precisely. This leak detection system has been applied in 5000 km pipeline or so.


Author(s):  
XianYong Qin ◽  
LaiBin Zhang ◽  
ZhaoHui Wang ◽  
Wei Liang

Reliability, sensitivity and detecting time under practical operational conditions are the most important parameters of a leak detection system. With the development of hardware and software, more and more pipelines are installed with advanced SCADA (Supervisory Control and Data Acquisition) system, so the compatibility of the leak detection system with SCADA system is also becoming important today. Pipeline leakage generates a sudden change in the pipeline pressure and flow. The paper introduces leak detecting methods according to the pipeline pressure wave change. In order to improve the compatibility of the leak detecting system, “OPC (Ole for process Control)” technology is used for obtaining the pressure signals from the distributed data collection system. Special focus is given on analysis of the pressure signals. It is successful to denoise the signals by means of wavelet scale shrinkage, and to capture the leak time tag using wavelet transform modulus maximum for locating the leak position accurately. A leak detecting system is established based on SCADA system. Tests and practical applications show that it locates leak position precisely. Good performance is obtained on both crude oil pipeline and product pipeline.


Author(s):  
Renan Martins Baptista ◽  
Carlos Henrique Wildhagen Moura

Multiphase flow is one of the most difficult situations for leak detection in pipelines, due to several reasons: the existence of two different and independent flow rates at each phase, five or more possible flow patterns, different fluid velocities at the phases, and sometimes a non-Newtonian associated behavior, due to the formation of an oil-water emulsion. There are two main groups for leak detection techniques: the models (or CPM, as stated in [API_1130]) which monitor the flow in real time (CVB, RTTM, PPA, etc.) from inside the pipeline (the instrument sensor is actually in physical contact with the fluid), and try to model the flow using a state estimator; and those based on dedicated external sensors (thermal, mass dispersion, etc) along the pipeline. Most of the technologies at the first group rely entirely on volumetric flow rate measurements, which turn them quite ineffective for multiphase flow. It is also relevant to consider that in some multiphase flow pipelines, the flow pattern changes quite random and intensively, allowing from a bubble pattern, to a slug pattern. There is sometimes the situation where a gas slug is big enough to fill entirely a short line and allow it to behave similarly to a gas pipeline, during a certain time (in fact, this was the case of one of the field tests this work will describe). This will bring unpredictability to those lines, in opposition to a regular single-phase line. Within this frame, the systems based on prediction approaches (hydraulic, statistical, etc, i. e., CPM’s), will show a good probability to be unreliable, inaccurate and not sensitive. The acoustic system is an exception to those two groups of technologies previously mentioned. It has, on one hand, a sensor that really touches the fluid (which would suggest it to be within the first group), but there’s no flow model behind it, on the other hand, but an acoustic sign analysis algorithm, acting somewhat like a piece of hardware. This paper will describe, discuss and report data for tests using an acoustic leak detection system at three different multiphase flow pipelines in Brazil, managed by PETROBRAS Production & Exploration Department.


Author(s):  
Harry SMITH ◽  
Kirsty MCNEIL ◽  
Tom RECORD ◽  
Dan BUZATU ◽  
Georgian ILIESCU ◽  
...  

Author(s):  
Ruprecht M. J. Pichler

Leak detection systems for liquid pipelines are installed to minimize spillage in case of a leak. Therefore reliability, sensitivity and detection time under practical operating conditions are the most important parameters of a leak detection system. Noise factors to be considered among others are unknown fluid property data, friction factor, instrument errors, transient flow, slack-line operation and SCADA update time. The opening characteristics and the size of leaks differ considerably from case to case. Each software-based leak detection method available today has its particular strength. As long as just one or two of these methods are applied to a pipeline a compromise has to be found for the key parameters of the leak detection system. The paper proposed illustrates how a combination of several different software-based leak detection methods together with observer-type system identification and a knowledge-based evaluation can improve leak detection. Special focus is given to leak detection and automated leak locating under transient flow conditions. Practical results are shown for a crude oil pipeline and a product pipeline.


Author(s):  
Marti´n Di Blasi ◽  
Carlos Muravchik

The use of statistical tools to improve the decision aspect of leak detection is becoming a common practice in the area of computer pipeline monitoring. Among these tools, the sequential probability ratio test is one of the most named techniques used by commercial leak detection systems [1]. This decision mechanism is based on the comparison of the estimated probabilities of leak or no leak observed from the pipeline data. This paper proposes a leak detection system that uses a simplified statistical model for the pipeline operation, allowing a simple implementation in the pipeline control system [2]. Applying linear regression to volume balance and average pipeline pressure signals, a statistically corrected volume balance signal with reduced variance is introduced. Its expected value is zero during normal operation whereas it equals the leak flow under a leak condition. Based on the corrected volume balance, differently configured sequential probability ratio tests (SPRT) to extend the dynamic range of detectable leak flow are presented. Simplified mathematical expressions are obtained for several system performance indices, such as spilled volume until detection, time to leak detection, minimum leak flow detected, etc. Theoretical results are compared with leak simulations on a real oil pipeline. A description of the system tested over a 500 km oil pipeline is included, showing some real data results.


Author(s):  
Travis Mecham ◽  
Galen Stanley ◽  
Michael Pelletier ◽  
Jim C. P. Liou

Recent advances in SCADA and leak detection system technologies lead to higher scan rates and faster model speeds. As these model speeds increase and the inherent mathematical uncertainties in implicit method solutions are reduced, errors and uncertainties in measurement of the physical properties of the fluids transported by pipeline come to dominate the confidence calculations for computer generated leak alerts in the control center. The ability to collect more data must be supported by the need for better model data in order to achieve optimal leak detection system performance. This is particularly true when the products transported are non-homogeneous and have strong viscosity-vs-temperature relationships. These are characteristics of crude oils in California’s San Joaquin Valley where significant heating is required to pump these oils in an efficient manner. Proper characterization and correct mathematical expression of these physical properties in leak models has become critical. This paper presents these new developments in the context of an implementation of this new technology for the Pacific Pipeline System (PPS). PPS is a recently constructed and commissioned 209 km (130-mile), 50.8 cm (20″) diameter, insulated, hot crude oil pipeline between the southern portion of California’s San Joaquin Valley and refineries in the Los Angeles basin. Operational temperatures in this line vary from ambient to 82.2°C (180°F) with pressures ranging from 345 kPa (50 psi) to 11,720 kPa (1700 psi). Due to the unique geometry of the line, facilities along the route include pumping stations, metering stations and numerous “throttle-type” pressure reduction facilities. On PPS, a high-speed leak detection model is supported by a fiber optic (OC-1) communication backbone with data rate capacities in excess of 50 Megabits Per Second (MPS). Total scan times for the distributed communication system have been reduced to 1/4 second — each facility reports data to the SCADA host four times each second. A corresponding 1/4 second leak detection model cycle leads to selection of Methods of Characteristics segments on the order of 260 meters (850 feet). This resolution, in conjunction with the advanced instrumentation package of PPS, makes detection of very small leaks realizable. This paper starts with an overview of the system and combines a mix of the theoretical requirements imposed by the mathematical solutions with a practical description of the laboratory procedures and propagated experimental errors. The paper reviews temperature-related errors and uncertainties and their influence on leak detection performance.


Author(s):  
Rick Barlow ◽  
Ted Farquhar ◽  
Anar Tleukulov

The subarctic location of Enbridge’s Norman Wells pipeline provides unique conditions affecting both construction and operations. These include the huge variations in annual air temperature, permanently frozen ground (permafrost), hundreds of river crossings and potential slope instability. The regulatory authorities recognized this environmental sensitivity and stringent conditions for construction and operation were applied. In this difficult environment, loss of integrity must be detected rapidly and at low thresholds. To ensure that integrity monitoring maintains or improves these thresholds, frequent testing is necessary. Testing of the integrity of this remote northern oil pipeline provides significant operational challenges. This remote 869km (540 mile) NPS12 crude oil pipeline has been operating in the Canadian subarctic since 1985. This paper will outline the implementation, assessment and future directions of the integrity monitoring testing of the pipeline’s leak detection capability. The history of this pipeline in the Canadian Northwest Territories will be outlined with emphasis on the special regulatory issues of this sensitive sub arctic environment. The development of a Computational Pipeline Modeling (CPM) leak detection system to meet these regulations will be summarized with reference to the guidelines of CSA Z662, Appendix E. A central component of meeting this regulatory requirement is an annual test program that uses controlled fluid withdrawal to test the CPM system and operational responses. The special methods and procedures used to meet the challenges of this program will be noted. The extent and frequency of testing make this probably one of the most tested liquid pipeline leak detection systems in the world. These controlled fluid withdrawal tests are used to enhance the Enbridge response to operational emergencies. Many factors must be considered when designing these tests. A detailed description of the preparation and field logistics required for the pipeline CPM test will be presented. The special needs of conducting tests in an environmentally sensitive region will also be outlined. A review of how these tests address the considerations of API 1149 and API 1155 are summarized. Since pipeline completion, over 70 test events have been conducted. A recent case study will detail some of the issues associated with testing. Future plans for enhancements using additional testing methodologies will be presented with particular mention of a simulation-based alternative.


Sign in / Sign up

Export Citation Format

Share Document