A Novel Dual-Mode Microstrip Bandpass Filter with a Pair of Equal Crossed Slots

2012 ◽  
Vol 236-237 ◽  
pp. 1383-1388
Author(s):  
Su Ping Li ◽  
Cheng Guo Chang ◽  
Wei Wu

A novel dua1-mode microstrip bandpass filter with two triangle corner cuts and a pair of equal crossed slots is proposed. The performance of the designed filter is studied in detail. The proposed filter structure uses a single patch without coupling gaps. The center frequency is about 2.11GHz. The 3dB relative bandwidth is 9.95%, and the minimum insertion loss in the passband is 0.12dB. Two transmission zeros can be implemented on both sides of the passband. The insertion loss is l0dB within 2.04-2.18GHz. The effect on the filter’s performance by changing filter parameters is studied. The results show that this new filter can provide a low loss and make miniaturization easy.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Karthie S. ◽  
Zuvairiya Parveen J. ◽  
Yogeshwari D. ◽  
Venkadeshwari E.

Purpose The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications. Design/methodology/approach In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF. Findings The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works. Originality/value In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.


This paper presents design and analytical model for Sharp Skirt Dual-Mode Bandpass Filter for RF receivers. Proposed filter is designed using open stub loaded H shaped resonator. Based on analytical model insertion loss S21 and return loss S11 for proposed filter are demonstrated. Inductive Overlaying plate is proposed to control upper passband edge of proposed filter to improve frequency selectivity with fixed center frequency. The proposed filter has sharp frequency selective range from 5.1GHz to 9.2GHz. With overlay plate, frequency selective range is tuned to 5.1GHz-8.6GHz. Without overlaying plate the proposed filter has return loss greater than 10dB and insertion loss of 0.7dB. Lower and upper passband edges are at 5.1GHz and 9.2GHz with attenuation level of 52dB and 54dB respectively. With overlaying plate, the filter has same S 11 and S 21 parameters, but upper passband edge is shifted from 9.2GHz to 8.6GHz


Frequenz ◽  
2016 ◽  
Vol 70 (9-10) ◽  
Author(s):  
Chuanming Zhu ◽  
Jin Xu ◽  
Wei Kang ◽  
Zhenxin Hu ◽  
Wen Wu

AbstractIn this paper, a miniaturized dual-band bandpass filter (DB-BPF) using embedded dual-mode resonator (DMR) with controllable bandwidths is proposed. Two passbands are generated by two sets of resonators operating at two different frequencies. One set of resonators is utilized not only as the resonant elements that yield the lower passband, but also as the feeding structures with source-load coupling to excite the other to produce the upper passband. Sufficient degrees of freedom are achieved to control the center frequencies and bandwidths of two passbands. Moreover, multiple transmission zeros (TZs) are created to improve the passband selectivity of the filter. The design of the filter has been demonstrated by the measurement. The filter features not only miniaturized circuit sizes, low insertion loss, independently controllable central frequencies, but also controllable bandwidths and TZs.


2021 ◽  
Vol 36 (7) ◽  
pp. 865-871
Author(s):  
Jin Shi ◽  
Jiancheng Dong ◽  
Kai Xu ◽  
Lingyan Zhang

A novel miniaturized wideband bandpass filter (BPF) using capacitor-loaded microstrip coupled line is proposed. The capacitors are loaded in parallel and series to the coupled line, which makes the filter just require one one-eighth wavelength coupled line and achieve filtering response with multiple transmission poles (TPs) and transmission zeros (TZs). Compared with the state-of-the-art microstrip wideband BPFs, the proposed filter has the advantages of compact size and simple structure. A prototype centered at 1.47 GHz with the 3-dB fractional bandwidth of 86.5% is demonstrated, which exhibits the compact size of 0.003λ2 g (λg is the guided wavelength at the center frequency) and the minimum insertion loss of 0.37 dB.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Zh. Yao ◽  
C. Wang ◽  
N. Y. Kim

A dual-mode broadband bandpass filter (BPF) with multiple controllable transmission-zeros using T-shaped stub-loaded resonators (TSSLRs) is presented. Due to the symmetrical plane, the odd-even-mode theory can be adopted to characterize the BPF. The proposed filter consists of a dual-mode TSSLR and two modified feed-lines, which introduce two capacitive and inductive source-load (S-L) couplings. Five controllable transmission zeros (TZs) can be achieved for the high selectivity and the wide stopband because of the tunable amount of coupling capacitance and inductance. The center frequency of the proposed BPF is 5.8 GHz, with a 3 dB fraction bandwidth of 8.9%. The measured insertion and return losses are 1.75 and 28.18 dB, respectively. A compact size and second harmonic frequency suppression can be obtained by the proposed BPF with S-L couplings.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 712 ◽  
Author(s):  
Wei Zhang ◽  
Zhao Yao ◽  
Jie Zhang ◽  
Eun Seong Kim ◽  
Nam Young Kim

In this letter, a compact dual-mode bandpass filter (BPF) with an ultra-wide stopband that employs two folded open-loop resonators (FOLRs) and stub-loaded resonators (SLRs) is proposed. The dual-mode resonators are optimized by loading two SLRs onto the folded open-loop resonators, and this process is analyzed using the dual-mode theory. To miniaturize the device size and increase chip performance, the proposed BPF is fabricated by a III–V compound semiconductor-fabrication process using a high-performance GaAs substrate based on the integration passivation device (IPD) fabrication process. A compact dual-mode BPF with low insertion loss and high return loss is designed and fabricated. Two extra transmission zeros (TZs) located in the high-frequency range increase the wide stopband, and the two TZs near the passband result in a higher selectivity. A resonant frequency centered at 7.45 GHz with an insertion loss of −1.21 dB and a measured return loss of higher than −23.53 dB and 3 dB fractional bandwidths of 5.8% are achieved. The stopband can be suppressed up to 20 GHz owing to the two tunable TZs resulting in higher selectivity and wideband rejection. The size of the filter was drastically optimized using a simplified architecture of two FOLRs and SLRs.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Min-Hang Weng ◽  
Chin-Yi Tsai ◽  
De-Li Chen ◽  
Yi-Chun Chung ◽  
Ru-Yuan Yang

This paper presents a miniaturized bandpass filter, which uses half mode substrate integrated waveguide (HMSIW) structure with embedded step impedance structure (SIS). By embedding the stepped impedance structure into the top metal of the waveguide cavity, the center frequency can be quickly shifted to a lower frequency. The operating center frequency of the proposed bandpass filter (BPF) using HMSIW resonators with embedded SIS is tunable as functions of the parameters of the SIS. The design curve is provided. A filter example of the center frequency of the filter at 3.5 GHz is fabricated and measured, having the insertion loss |S21| less than 3 dB, and the return loss |S11| greater than 10 dB. The transmission zeros are located at 2.95 GHz and 3.95 GHz on both sides of the passband, both of which are lower than 30 dB. The simulation result and the measured response conform to the proposed design concept. The proposed HMSIW filter design is in line with the current 5G communication trend.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Ju Seong Park ◽  
Wahab Mohyuddin ◽  
Hyun Chul Choi ◽  
Kang Wook Kim

A design method of narrow bandpass filters (NBPFs) of 4–6% bandwidth with ultrawideband suppression of harmonic passbands, utilizing two cascaded step impedance resonators (SIRs) in a suspended stripline, is proposed in this paper. The proposed design utilized the characteristics of a suspended stripline, which provides a much higher characteristic impedance ratio as compared with that of the microstripline, enabling ultrawideband harmonic suppression. As an example of the NBPF, a filter with a passband center frequency f0 of 0.75 GHz and bandwidth of 5% was implemented and proved to suppress the harmonic passbands up to 13.5 f0. Since the proposed filter was implemented on the suspended stripline, the passband insertion loss was only −0.9 dB, which is low as compared with other previous designs. The proposed filter is a compact high-performance low-loss NBPF, which can be applicable to various wireless systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Ziqiang Xu ◽  
Gen Zhang ◽  
Hong Xia ◽  
Meijuan Xu

Hexagonal dual-mode cavity and its application to substrate integrated waveguide (SIW) filter are presented. The hexagonal SIW resonator which can combine flexibility of rectangular cavity and performance of circular cavity is convenient for dual-mode bandpass filters design. By introducing coupling between source and load, the filter not only has good selectivity due to two controllable transmission zeros, but also has a small size by the virtue of its single-cavity structure. A demonstration filter with a center frequency of 10 GHz and a 3 dB fractional bandwidth of 4% is designed and fabricated to validate the proposed structure. Measured results are in good agreement with simulated ones.


Sign in / Sign up

Export Citation Format

Share Document