A Multi-Classified Method of Support Vector Machine (SVM) Based on Entropy

2012 ◽  
Vol 241-244 ◽  
pp. 1629-1632 ◽  
Author(s):  
Yan Yue

Studies propose to combine standard SVM classification with the information entropy to increase SVM classification rate as well as reduce computational load of SVM testing. The algorithm uses the information entropy theory to per-treat samples’ attributes, and can eliminate some attributes which put small impacts on the date classification by introducing the reduction coefficient, and then reduce the amount of support vectors. The results show that this algorithm can reduce the amount of support vectors in the process of the classification with support vector machine, and heighten the recognition rate when the amount of the samples is larger compared to standard SVM and DAGSVM.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Andronicus A. Akinyelu ◽  
Aderemi O. Adewumi

Support vector machine (SVM) is one of the top picks in pattern recognition and classification related tasks. It has been used successfully to classify linearly separable and nonlinearly separable data with high accuracy. However, in terms of classification speed, SVMs are outperformed by many machine learning algorithms, especially, when massive datasets are involved. SVM classification speed scales linearly with number of support vectors, and support vectors increase with increase in dataset size. Hence, SVM classification speed can be enormously reduced if it is trained on a reduced dataset. Instance selection techniques are one of the most effective techniques suitable for minimizing SVM training time. In this study, two instance selection techniques suitable for identifying relevant training instances are proposed. The techniques are evaluated on a dataset containing 4000 emails and results obtained compared to other existing techniques. Result reveals excellent improvement in SVM classification speed.


2014 ◽  
Vol 615 ◽  
pp. 194-197
Author(s):  
Zhen Yuan Tu ◽  
Fang Hua Ning ◽  
Wu Jia Yu

In practice, it is difficult for Support Vector Machine (SVM) to have a relatively high recognition rate as well as a quite fast recognition speed. In order to resolve this defect, in this paper we build a SVM classification model combining numerical characteristics. We use readings of rotary natural meters as the test temple, do positioning, preprocessing, feature points extracting, classifying and other series of operations to the numeric region of the dial. Then with the idea of cross-validation, we keep doing parameter optimation to SVM. At last, after making a comprehensive contrast of the effects which numerous performance factors make on the experimental outputs, we try to give our explanation of the outputs from different perspectives.


2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Jingzong Yang ◽  
Xiaodong Wang ◽  
Zao Feng ◽  
Guoyong Huang

Aiming at the nonstationary and nonlinear characteristics of acoustic impulse response signal in pipeline blockage and the difficulty in identifying the different degrees of blockage, this paper proposed a pattern recognition method based on local mean decomposition (LMD), information entropy theory, and extreme learning machine (ELM). Firstly, the impulse response signals of pipeline extracted in different operating conditions were decomposed with LMD method into a series of product functions (PFs). Secondly, based on the information entropy theory, the appropriate energy entropy, singular spectrum entropy, power spectrum entropy, and Hilbert spectrum entropy were extracted as the input feature vectors. Finally, ELM was introduced for classification of pipeline blockage. Through the analysis of acoustic impulse response signal collected under the condition of health and different degrees of blockages in pipeline, the results show that the proposed method can well characterize the state information. Also, it has a great advantage in terms of accuracy and it is time consuming when compared with the support vector machine (SVM) and BP (backpropagation) model.


2020 ◽  
pp. 002029402096482
Author(s):  
Sulaiman Khan ◽  
Abdul Hafeez ◽  
Hazrat Ali ◽  
Shah Nazir ◽  
Anwar Hussain

This paper presents an efficient OCR system for the recognition of offline Pashto isolated characters. The lack of an appropriate dataset makes it challenging to match against a reference and perform recognition. This research work addresses this problem by developing a medium-size database that comprises 4488 samples of handwritten Pashto character; that can be further used for experimental purposes. In the proposed OCR system the recognition task is performed using convolution neural network. The performance analysis of the proposed OCR system is validated by comparing its results with artificial neural network and support vector machine based on zoning feature extraction technique. The results of the proposed experiments shows an accuracy of 56% for the support vector machine, 78% for artificial neural network, and 80.7% for the proposed OCR system. The high recognition rate shows that the OCR system based on convolution neural network performs best among the used techniques.


2016 ◽  
Vol 25 (3) ◽  
pp. 417-429
Author(s):  
Chong Wu ◽  
Lu Wang ◽  
Zhe Shi

AbstractFor the financial distress prediction model based on support vector machine, there are no theories concerning how to choose a proper kernel function in a data-dependent way. This paper proposes a method of modified kernel function that can availably enhance classification accuracy. We apply an information-geometric method to modifying a kernel that is based on the structure of the Riemannian geometry induced in the input space by the kernel. A conformal transformation of a kernel from input space to higher-dimensional feature space enlarges volume elements locally near support vectors that are situated around the classification boundary and reduce the number of support vectors. This paper takes the Gaussian radial basis function as the internal kernel. Additionally, this paper combines the above method with the theories of standard regularization and non-dimensionalization to construct the new model. In the empirical analysis section, the paper adopts the financial data of Chinese listed companies. It uses five groups of experiments with different parameters to compare the classification accuracy. We can make the conclusion that the model of modified kernel function can effectively reduce the number of support vectors, and improve the classification accuracy.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
Suhail Khokhar ◽  
A. A. Mohd Zin ◽  
M. A. Bhayo ◽  
A. S. Mokhtar

The monitoring of power quality (PQ) disturbances in a systematic and automated way is an important issue to prevent detrimental effects on power system. The development of new methods for the automatic recognition of single and hybrid PQ disturbances is at present a major concern. This paper presents a combined approach of wavelet transform based support vector machine (WT-SVM) for the automatic classification of single and hybrid PQ disturbances. The proposed approach is applied by using synthetic models of various single and hybrid PQ signals. The suitable features of the PQ waveforms were first extracted by using discrete wavelet transform. Then SVM classifies the type of PQ disturbances based on these features. The classification performance of the proposed algorithm is also compared with wavelet based radial basis function neural network, probabilistic neural network and feed-forward neural network. The experimental results show that the recognition rate of the proposed WT-SVM based classification system is more accurate and much better than the other classifiers. 


Author(s):  
Jeena Augustine

Abstract: Emotions recognition from the speech is one of the foremost vital subdomains within the sphere of signal process. during this work, our system may be a two-stage approach, particularly feature extraction, and classification engine. Firstly, 2 sets of options square measure investigated that are: thirty-nine Mel-frequency Cepstral coefficients (MFCC) and sixty-five MFCC options extracted supported the work of [20]. Secondly, we've got a bent to use the Support Vector Machine (SVM) because the most classifier engine since it is the foremost common technique within the sector of speech recognition. Besides that, we've a tendency to research the importance of the recent advances in machine learning along with the deep kerne learning, further because the numerous types of auto-encoders (the basic auto-encoder and also the stacked autoencoder). an oversized set of experiments unit conducted on the SAVEE audio information. The experimental results show that the DSVM technique outperforms the standard SVM with a classification rate of sixty-nine. 84% and 68.25% victimization thirty-nine MFCC, severally. To boot, the auto encoder technique outperforms the standard SVM, yielding a classification rate of 73.01%. Keywords: Emotion recognition, MFCC, SVM, Deep Support Vector Machine, Basic auto-encoder, Stacked Auto encode


2020 ◽  
Vol 17 (4) ◽  
pp. 572-578
Author(s):  
Mohammad Parseh ◽  
Mohammad Rahmanimanesh ◽  
Parviz Keshavarzi

Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods


Sign in / Sign up

Export Citation Format

Share Document