Study on Vibration Fatigue Limits Test Method for Metallic Joint Pipe

2012 ◽  
Vol 248 ◽  
pp. 74-78
Author(s):  
Chuang Shao ◽  
Ming Xing Qiu ◽  
Yi Xuan Li

In order to determine the fatigue limits of two kinds of titanium alloy joint pipes connected by welding and rolling, the fatigue tests were carried out by test standard which defines the test method and failure rule. One cantilever-beam specimen was fixed on the shaker by the special fixture. The laser-displacement-sensor was fixed at the free end of pipe and the strain-gauge was adhesive at the root of the pipe. The first frequency of specimen was measured by these sensors. The first resonance frequency fell rapidly with the increment of the excitation loads of the shaker. The failure rule (1% drop of resonance frequency) of the standard was not same with the fatigue limit test of these connected pipes at the test beginning. In order to define the lives of two kinds of pipes, the stair method of sweep test was used to eliminate the effect of connection gap. Then the vibration fatigue of every specimen was tested at the last resonance frequency. And all the fatigue tests were finished using the failure rule which defines 1% drop of the steady resonance frequency.

2012 ◽  
Vol 184-185 ◽  
pp. 701-706
Author(s):  
Ming Xing Qiu ◽  
Chuang Shao ◽  
Yong Zhou ◽  
Li Hua Yue

In order to determine the fatigue limits of two kinds of titanium alloy pipes connected by welding and rolling, fatigue tests were carried out by the Aero-Criterion which gives vibration fatigue test method and failure criteria. A laser-displacement-sensor was used at the free end and a strain-gauge at the root of the pipe specimen. The test result shows that the fatigue limit of the welded pipe is higher than the rolled one. In the end some new findings are listed according to the test.


2008 ◽  
Vol 44-46 ◽  
pp. 311-316
Author(s):  
Chuang Shao ◽  
Sen Ge ◽  
Hua Tao ◽  
Claude Bathias

Two kinds of beam specimens made of composite laminated panel were designed and used to do vibration fatigue test for ε-N curves. the shapes of various simulated joint configurations for the specimens were adopted in order to get the accurate results. They were two kinds of double-cantilever beams supplied by T-mode stiffener and L-mode stiffener. All beam specimens were tested under the same shape of narrowband spectrum and the several loadings of random vibration by shaker excitation. The bandwidth of the narrowband random spectrum was 1/3 octave bandwidth whose centre frequency was the first resonance frequency of the cantilever beam, so that it reduced influences of the difference of specimens resonance frequency. Fitting vibration fatigue test results, the ε-N curves would be obtained then. The vibration test shows that this method of getting ε-N vibration curve is feasible. It can be used in practice.


2012 ◽  
Vol 523-524 ◽  
pp. 939-944
Author(s):  
Toyohiro Azuma ◽  
Eiji Niwa ◽  
Yu Xin Peng ◽  
Junji Kaneko ◽  
Yuki Shimizu ◽  
...  

A strain-gauge-type precision displacement sensor, which is developed for a usage of micro-XY stage, is described in this paper. A thin-film strain-gauge element, which is made by Cr-N alloy, is directly fabricated on the base of the strain gauge. The direct fabrication and using the Cr-N element are expected to achieve higher sensitivity for displacement detection and better stability against the change of ambient temperature. In this study, several designs of the thin-film strain gauge, including both of two-gauge-type and four-gauge-type, are prepared to compare sensor performances such as sensitivity, stability and so on. The designed patterns of the strain-gauge element are directly fabricated on zirconia plates by using photolithography processes. The fabricated strain gauges are then evaluated as precision displacement sensors. At first, stability of the fabricated Cr-N strain-gauge-type displacement sensor was confirmed by comparing with the one made by a conventional strain gauge. Resolution of the fabricated Cr-N strain-gauge-type displacement sensors was then evaluated by comparing with a commercially-available laser displacement sensor, while giving sub-micrometer-order deformation to the strain-gauge-type displacement sensor. Details of the design, fabrication and evaluation results of the Cr-N strain-gauge-type displacement sensor are described.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


Author(s):  
Eric B. Halfmann ◽  
C. Steve Suh ◽  
N. P. Hung

The workpiece and tool vibrations in a lathe are experimentally studied to establish improved understanding of cutting dynamics that would support efforts in exceeding the current limits of the turning process. A Keyence laser displacement sensor is employed to monitor the workpiece and tool vibrations during chatter-free and chatter cutting. A procedure is developed that utilizes instantaneous frequency (IF) to identify the modes related to measurement noise and those innate of the cutting process. Instantaneous frequency is shown to thoroughly characterize the underlying turning dynamics and identify the exact moment in time when chatter fully developed. That IF provides the needed resolution for identifying the onset of chatter suggests that the stability of the process should be monitored in the time-frequency domain to effectively detect and characterize machining instability. It is determined that for the cutting tests performed chatters of the workpiece and tool are associated with the changing of the spectral components and more specifically period-doubling bifurcation. The analysis presented provides a view of the underlying dynamics of the lathe process which has not been experimentally observed before.


2021 ◽  
pp. 109963622110204
Author(s):  
Zhi-Wei Wang ◽  
Yang-Zhou Lai ◽  
Li-Jun Wang

The bending fatigue tests of single-wall and double-wall corrugated paperboards were conducted to obtain the εrms– N curves under sinusoidal and random loads in this paper. The εrms– N equation of corrugated paperboard can be described by modified Coffin–Manson model considering the effect of mean stress. Four independent fatigue parameters are obtained for single-wall and double-wall corrugated paperboards. The εrms– N curve under random load moves left and rotates clockwise compared with that under sinusoidal load. The fatigue life under random load is much less than that under sinusoidal load, and the fatigue design of corrugated box should be based on the fatigue result under random load. The stiffness degradation and energy dissipation of double-wall corrugated paperboard before approaching fatigue failure are very different from that of single-wall one. For double-wall corrugated paperboard, two turning points occur in the stiffness degradation, and fluctuation occurs in the energy dissipation. Different from metal materials, the bending fatigue failure of corrugated paperboard is a process of wrinkle forming, spreading, and folding. The results obtained have practical values for the design of vibration fatigue of corrugated box.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Jiang ◽  
Gun Jin Yun ◽  
Li Zhao ◽  
Junyong Tao

Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a notched specimen structure were measured under different base random excitations. According to the measured stress responses, the structural fatigue lives corresponding to the different vibrational excitations were predicted by using the WAFO simulation technique. Second, a couple of destructive vibration fatigue tests were carried out to validate the accuracy of the WAFO fatigue life prediction method. After applying the proposed experimental and numerical simulation methods, various factors that affect the vibration fatigue life of structures were systematically studied, including root mean squares of acceleration, power spectral density, power spectral bandwidth, and kurtosis. The feasibility of WAFO for non-Gaussian vibration fatigue life prediction and the use of non-Gaussian vibration excitation for accelerated fatigue testing were experimentally verified.


2013 ◽  
Vol 677 ◽  
pp. 384-387 ◽  
Author(s):  
Wai Kei Ricky Kot ◽  
Luen Chow Chan

In this paper, a visualisation system will be discussed that can be used to capture the deformation profile of the sheet blank during sheet metal forming processes, such as deep drawing and shape forming. The visualisation system utilizes a 2D laser displacement sensor for deformation profile acquisition. The sensor is embedded in the die and the laser propagates through the die to detect the profile change of the specimen concealed in the die during operation. The captured profile data will be collected, manipulated and transferred to a monitor for display via a controller. This visualisation of the deformation profile will provide engineers and researchers with an intuitive means of analysing and diagnosing the deformation process during sheet metal forming.


Sign in / Sign up

Export Citation Format

Share Document