Advanced Rapid Forming Technology for Remanufacturing Engineering

2012 ◽  
Vol 271-272 ◽  
pp. 386-389
Author(s):  
Pei Jing Shi ◽  
Hong Mei Wang ◽  
Wei Zhang ◽  
Bin Shi Xu

Based on the foreign remanufacturing mode, the new remanufacturing rapid forming technology, which relies mainly on Surface Repair and Performance Improving Method has been explored and practiced. The aim of remanufacturing forming is to renew the original size of the waste components rapidly, and then improve their service performance. The advanced rapid forming technology, especially the high density heat source surface forming technology, is the important technique to carry out rapid forming. Based on the arc heat source, plasma heat source and laser heat source, three kinds of high density heat source remanufacturing forming technologies, such as high speed arc spraying forming technology, micro-arc plasma forming technology, and laser cladding forming technology, have been developed.

2021 ◽  
Author(s):  
Liming Liu ◽  
Xinkun Xu ◽  
Guomin Xu ◽  
Zhaodong Zhang

Abstract In order to improve the energy utilization efficiency of double-TIG arc, based on the synchronous induction of pulsed laser to double-arc, the coupling-enhanced discharge phenomenon between double-arc is studied in this paper. The energy utilization efficiency of pulsed laser induced double-arc is quantitatively analyzed. The physical characteristics of coupling double-arc are studied based on high-speed camera and spectral diagnosis technology. The physical model is established to discuss the particle migration during the coupling discharge, characterizing the movement state of electrons. The results show that Dla (horizontal distance between the tungsten electrode tip and laser beam axis) has a significant effect on the energy utilization efficiency of the heat source. With the increase of Dla, there are three interaction relationships between the double-arc plasma and keyhole plasma: Mutual interference, Coupling-enhanced discharge and No interaction. A suitable Dla can realize the synchronous induction of laser to double-arc plasma, forming a coupling double-arc, the heat source has a higher energy utilization efficiency. The migration of particles in double-arc can be divided into four stages: Double-arc free discharge stage, Laser-induced initial stage, Laser-induced contraction stage and Laser-induced stable stage. Under the induction of laser, the double-arc forms a common compressed conductive channel. The energy density of coupling double-arc reaches 9.3 times that of traditional double-arc, and the total electron kinetic energy increases by 38% compared with traditional double-arc.


2007 ◽  
Vol 127 (10) ◽  
pp. 1033-1042
Author(s):  
Tamio Okutani ◽  
Nobuyuki Nakamura ◽  
Hisato Araki ◽  
Shouji Irie ◽  
Hiroki Osa ◽  
...  
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4705
Author(s):  
Julian Lich ◽  
Tino Wollmann ◽  
Angelos Filippatos ◽  
Maik Gude ◽  
Juergen Czarske ◽  
...  

Due to their lightweight properties, fiber-reinforced composites are well suited for large and fast rotating structures, such as fan blades in turbomachines. To investigate rotor safety and performance, in situ measurements of the structural dynamic behaviour must be performed during rotating conditions. An approach to measuring spatially resolved vibration responses of a rotating structure with a non-contact, non-rotating sensor is investigated here. The resulting spectra can be assigned to specific locations on the structure and have similar properties to the spectra measured with co-rotating sensors, such as strain gauges. The sampling frequency is increased by performing consecutive measurements with a constant excitation function and varying time delays. The method allows for a paradigm shift to unambiguous identification of natural frequencies and mode shapes with arbitrary rotor shapes and excitation functions without the need for co-rotating sensors. Deflection measurements on a glass fiber-reinforced polymer disk were performed with a diffraction grating-based sensor system at 40 measurement points with an uncertainty below 15 μrad and a commercial triangulation sensor at 200 measurement points at surface speeds up to 300 m/s. A rotation-induced increase of two natural frequencies was measured, and their mode shapes were derived at the corresponding rotational speeds. A strain gauge was used for validation.


Author(s):  
J. Gallia ◽  
R. Landers ◽  
Ching-Hao Shaw ◽  
T. Blake ◽  
W. Banzhaf
Keyword(s):  

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 351
Author(s):  
Adolfo Rosati ◽  
Damiano Marchionni ◽  
Dario Mantovani ◽  
Luigi Ponti ◽  
Franco Famiani

We quantified the photosynthetically active radiation (PAR) interception in a high-density (HD) and a super high-density (SHD) or hedgerow olive system, by measuring the PAR transmitted under the canopy along transects at increasing distance from the tree rows. Transmitted PAR was measured every minute, then cumulated over the day and the season. The frequencies of the different PAR levels occurring during the day were calculated. SHD intercepted significantly but slightly less overall PAR than HD (0.57 ± 0.002 vs. 0.62 ± 0.03 of the PAR incident above the canopy) but had a much greater spatial variability of transmitted PAR (0.21 under the tree row, up to 0.59 in the alley center), compared to HD (range: 0.34–0.43). This corresponded to greater variability in the frequencies of daily PAR values, with the more shaded positions receiving greater frequencies of low PAR values. The much lower PAR level under the tree row in SHD, compared to any position in HD, implies greater self-shading in lower-canopy layers, despite similar overall interception. Therefore, knowing overall PAR interception does not allow an understanding of differences in PAR distribution on the ground and within the canopy and their possible effects on canopy radiation use efficiency (RUE) and performance, between different architectural systems.


2015 ◽  
Vol 1111 ◽  
pp. 211-216
Author(s):  
Bogdan Florin Toma ◽  
Iulian Ionita ◽  
Diana Antonia Gheorghiu ◽  
Lucian Eva ◽  
Costică Bejinariu ◽  
...  

Influence of the process parameters and geometry of the spraying nozzle on the properties of titanium deposits obtained in wire arc spraying. Wire arc spraying is a process in which through minor modifications of the spray parameters, they can have a major impact on the coatings properties. In this paper there is presented a study on the influence of process parameters and fluid dynamics of the atomization gas on the properties of titanium deposits (14T - 99.9% Ti). For this there were used three different frontal spraying nozzles, having different geometries, and were varied the spraying gas pressure and the electrical current on three levels. There were evaluated the particles velocity, coating density, chemical composition and characteristic interface between deposition and substrate. Obviously, the high speed of the atomization gas determinate the improving of all properties, but in the same time increased the oxide content in the layer. However, the oxidation can be drastically reduced if the melting and atomization of the wire droplets is produced at the point of formation of the electric arc, and the spraying jet is designed to constrain the electric arc. The assessment of deposits adherence allowed the observation of process parameters that contribute to its improvement.


Sign in / Sign up

Export Citation Format

Share Document