Corrosion Resistance of Ni-ZrO2 Nanocomposite Coating Prepared by Pulse Electrodeposition with Rotating Cathode in an Ultrasonic Field

2013 ◽  
Vol 278-280 ◽  
pp. 422-425 ◽  
Author(s):  
Ya Fang Tian ◽  
Xian Hui Li ◽  
Zheng Hong Ao ◽  
Yu Jun Xue

The Ni- ZrO2 nanocomposite coatings were prepared by pulse electrodeposition with rotating cathode in an ultrasonic field, and the corrosion resistance of the coatings were studied in 5% H2SO4. The surface morphologies of composite coatings after corrosion were analyzed by scanning electron microscope (SEM). And corrosion rate was tested using an electronic balance. The results shows that, compared with pure Ni coating, pulse current composite coating and pulse current composite coating with ultrasound, the Ni-ZrO2 nanocomposite coating prepared by pulse electrodeposition with rotating cathode in an ultrasonic field has more uniform micro-structure, more compacted grain and lower corrosion rate. Peculiarly, it exhibits excellent corrosion resistance.

2013 ◽  
Vol 395-396 ◽  
pp. 174-178 ◽  
Author(s):  
Yang Yang Xu ◽  
Yu Jun Xue ◽  
Fang Yang ◽  
Chun Yang Liu ◽  
Ji Shun Li

Ni-ZrO2-CeO2nanocomposite coatings were prepared by pulse electrodeposition. The effect additions of ZrO2and CeO2nanoparticles, average current density, duty ratio and frequency of pulse current on nanoparticle contents of Ni-ZrO2-CeO2nanocomposites were studied. The surface morphologies and microhardness of different nanocomposite coatings (Ni-ZrO2, Ni-CeO2, Ni-ZrO2-CeO2) were analyzed. The results show that, with the average current density, duty ratio and frequency increased, the nanoparticle contents increased at first and then decreased. Compared with Ni-ZrO2and Ni-CeO2, the surface morphology of Ni-ZrO2-CeO2nanocomposite coating showed better smooth surface and more compact microstructure, the microhardness was also higher.


2014 ◽  
Vol 1049-1050 ◽  
pp. 31-34
Author(s):  
Shuang Shuang Liu ◽  
Yu Jun Xue ◽  
Yang Yang Xu ◽  
Ji Shun Li

Ni-ZrO2-CeO2 nanocomposite coating was prepared by pulse electrodeposition. The effect of addition of ZrO2 and CeO2 nanoparticles, average current density, duty cycle and pulse current on microhardness of Ni-ZrO2-CeO2 nanocomposites were studied. The results show that microhardness of nanocomposite is increased at first and then decreased with the increasing additive amounts of two kinds of nanoparticles. With increasing reverse the average current density, the microhardness of the composite coating increases. Also, the microhardness of nanocomposite fall with the increasing of pulse frequency. With the positive duty ratio increasing, the microhardness of the composite coating increase at first and then decreased, but with the increasing of the reverse duty ratio, the microhardness of nanocomposite coating is gradually decreased.


2011 ◽  
Vol 337 ◽  
pp. 54-58 ◽  
Author(s):  
De Ying Zhang ◽  
Yu Jun Xue ◽  
Xian Hui Li ◽  
Ji Shun Li

Ni-CeO2nanocomposite coatings were prepared by electrodeposition with rotating cathode in an ultrasonic field. The surface morphology of the coatings was examined. Effects of different electrodeposition methods, ultrasonic power and cathode rotating speed on the corrosion rate of Ni-CeO2nanocomposite coatings were analyzed. The results show that the corrosion rate of the coatings decreases considerably with the increasing of ultrasonic power, and suitable cathode rotating speed could decrease the corrosion rate of coatings. During the process of electrodeposition, the CeO2nanoparticles, ultrasonic and rotating cathode influence on the surface morphology of the coatings. The nanocomposite coating obtained by rotating cathode in an ultrasonic field exhibits refined crystal grains and presents an excellent corrosion resistance.


2014 ◽  
Vol 543-547 ◽  
pp. 3703-3706 ◽  
Author(s):  
Yong Wang ◽  
Lei Zhang

In order to enhance the surface properties of steel substrates, nanoNi-TiN composite coatings were prepared using ultrasonic-electrodeposition technology in this paper. The effects of ultrasonic on composite coatings were studied. The X-ray diffraction (XRD) study had been utilized to detect the crystalline and amorphous characteristics of Ni-TiN composite coatings. The surface morphology and metallurgical structure of composite coatings were observed with scanning electron microscope (SEM). Finally the corrosion resistance was tested. The results show that the ultrasonic has greatly effects on TiN nanoparticles in composite coatings. And the introduction of ultrasonic and TiN particles cause the nickel grains to become fine. The average grain diameter of TiN particles is 30 nm. The Ni grain is measured approximately 60 nm. The test of corrosion resistance shows the nanoNi-TiN composite coating is proved with good corrosion resistance. The corrosion rate of 45 steel is about 5 times than that of Ni-TiN composite coating, and the corrosion rate of Ni coating is above thrice than that of Ni-TiN composite coating.


2010 ◽  
Vol 25 (5) ◽  
pp. 522-526
Author(s):  
Yu-Jun XUE ◽  
Hong-Bin LIU ◽  
Ming-Ming LAN ◽  
Hong-Biao HAN ◽  
Ji-Shun LI

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1233
Author(s):  
Yuchao Zhao ◽  
Nan Ye ◽  
Haiou Zhuo ◽  
Chaolong Wei ◽  
Weiwei Zhou ◽  
...  

Tungsten-copper (W–Cu) composites are widely used as electrical contact materials, resistance welding, electrical discharge machining (EDM), and plasma electrode materials due to their excellent arc erosion resistance, fusion welding resistance, high strength, and superior hardness. However, the traditional preparation methods pay little attention to the compactness and microstructural uniformity of W–Cu composites. Herein, W–Cu composite coatings are prepared by pulse electroplating using nano-W powder as raw material and the influence of forward-reverse duty cycle of pulse current on the structure and mechanical properties is systematically investigated. Moreover, the densification mechanism of the W–Cu composite coating is analyzed from the viewpoints of forward-pulse plating and reverse-pulse plating. At the current density (J) of 2 A/dm2, frequency (f) of 1500 Hz, forward duty cycle (df) of 40% and reverse duty cycle (dr) of 10%, the W–Cu composite coating rendered a uniform microstructure and compact structure, resulting in a hardness of 127 HV and electrical conductivity of 53.7 MS/m.


Author(s):  
Chandrasekhara Sastry Chebiyyam ◽  
Pradeep N ◽  
Shaik AM ◽  
Hafeezur Rahman A ◽  
Sandeep Patil

Abstract Nano composite coatings on HSLA ASTM A860 alloy, adds to the barrier efficacy by increase in the microhardness, wear and corrosion resistance of the substrate material. Additionally, reduction of delamination of the nano composite coating sample is ascertained. Ball milling is availed to curtail the coating samples (Al2O3/ZrO2) to nano size, for forming a electrodeposited product on the substrate layer. The curtailment in grain size was ascertained to be 17.62% in Ni-Al2O3/ZrO2 nano composite coating. During the deposition process, due to the presence of Al2O3/ZrO2 nano particles an increase in cathode efficiency is ascertained. An XRD analysis of the nano composite coating indicates a curtailment in grain size along with increase in the nucleation sites causing a surge in the growth of nano coating layer. In correlation to uncoated HSLA ASTM A36 alloy sample, a surge in compressive residual stress by 47.14%, reduction of waviness by 32.14% (AFM analysis), upsurge in microhardness by 67.77% is ascertained in Ni-Al2O3/ZrO2 nano composite coating. Furthermore, in nano coated Ni-Al2O3/ZrO2 composite a reduction is observed pertaining to weight loss and friction coefficients by 27.44% and 13% in correlation to plain uncoated alloy respectively. A morphology analysis after nano coating indicates, Ni-Al2O3/ZrO2 particles occupy the areas of micro holes, reducing the wide gaps and crevice points inside the matrix of the substrate, enacting as a physical barrier to upsurge the corrosion resistance by 67.72% in correlation to HSLA ASTM A860 base alloy.


2021 ◽  
Vol 1016 ◽  
pp. 592-597
Author(s):  
Masato Ikoma ◽  
Taiki Morishige ◽  
Tetsuo Kikuchi ◽  
Ryuichi Yoshida ◽  
Toshihide Takenaka

Mg alloys are very attractive materials for transportation industry due to their toughness and lightness. Recycling Mg alloys is desired for energy saving that otherwise would be required to produce its primary metal. However, secondary produced Mg tends to contain a few impurity elements that deteriorate its corrosion resistance. For example, contamination of Mg alloy by Cu induces second phase of Mg2Cu and it works as strong cathode, resulting in the corrosion rate rapidly increasing. It was previously reported that the corrosion resistance of Mg with impurity Cu was remarkably improved by addition of alloying element Zn. Addition of Zn into Mg formed MgZn2 phase and incorporated Cu into MgZn2 phase instead of Mg2Cu formation. In this way, since Zn serves to improve the corrosion resistance of Mg, Mg alloy with high Zn concentration may form a lot of MgZn2 and may have better corrosion resistance even with high Cu concentration. In this work, the corrosion behavior of Mg-6mass%-1mass%Al (ZA61) with different Cu content up to 1mass% was investigated. As a result, ZA61-1.0Cu had much lower corrosion rate compared to Mg-0.2%Cu and the corrosion rate was almost the same as that of pure Mg.


2019 ◽  
Vol 26 (10) ◽  
pp. 1950080
Author(s):  
JIBO JIANG ◽  
HAOTIAN CHEN ◽  
LIYING ZHU ◽  
YAOXIN SUN ◽  
WEI QIAN ◽  
...  

Graphene oxide (GO) sheet and ultrasonic field (UF) were successfully employed to produce Ni–B/GO and UF–Ni–B/GO composite coatings on Q235 mild steel by electroless plating. The composite coatings’ structure and surface morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Results showed that GO was successfully co-deposited in the Ni–B alloy. Moreover, UF–Ni–B/GO composite coatings have smoother surface and thicker cross-section than others. The microhardness and corrosion resistance of the sample coatings were determined using Vickers hardness tests, Tafel electrochemical tests and electrochemical impedance measurements (EIS) in 3.5[Formula: see text]wt.% NaCl solution to receive the effect of GO and ultrasonic. The findings indicated that UF–Ni–B/GO exhibited optimum hardness (856[Formula: see text]HV) and enhanced corrosion resistance (6.38 [Formula: see text][Formula: see text] over the Ni–B and Ni–B/GO coatings. Due to these interesting properties of the coating, it could be used as a protective material in the automotive and aerospace industries for parts of machines that were manipulated in high temperature and corrosive environments.


RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12138-12145 ◽  
Author(s):  
Zong-wei Jia ◽  
Wan-chang Sun ◽  
Fang Guo ◽  
Ya-ru Dong ◽  
Xiao-jia Liu

Ni–Co–Al2O3 composite coatings were prepared by pulsed electrodeposition and electrophoresis–electrodeposition on aluminum alloy.


Sign in / Sign up

Export Citation Format

Share Document