Theoretical Value of Total Height of Profile in Rotational Turning

2013 ◽  
Vol 309 ◽  
pp. 154-161 ◽  
Author(s):  
István Sztankovics ◽  
János Kundrák

The roughness of the machined surface is determined by the kinematics of chip removal, the shaping and the geometry of the cutting edge. The change of the surface roughness in cutting done under different conditions is easy to follow examining the theoretical value of roughness characteristics. This paper examines how the extent of the theoretical value of total height of profile depends on the different technological parameters in rotational turning. Furthermore the surface roughness and roughness profile is compared achievable by rotational turning and traditional longitudinal turning (in case of radius and pointed cutting tool).

2020 ◽  
Vol 846 ◽  
pp. 122-127
Author(s):  
Gandjar Kiswanto ◽  
Yolanda Rudy Johan ◽  
Poly ◽  
Tae Jo Ko

Micro products or micro components are commonly used in today’s world. Research around micromanufacture technologies to produce a better product quality has been going on extensively. Ultrasonic vibration assisted micromilling (UVAM) is one of the technologies that can give a better machining qualities over the conventional ones. One of the benefits UVAM can give is reducing the machined surface roughness. The purpose of this paper is to give an idea how vibration assisted micromilling can give a better surface roughness quality. The theoritical surface roughness geometry model is made using MATLAB software. The cutting tool used in the simulation is end mill. There is a feature of the cutting tool called bottom cutting edge angle. This feature will be considered on this paper. The effects of the bottom cutting edge on workpiece machined surface can be looked visually from the simulation. Thus, the effects of cutting process using UVAM on the workpiece surface can be looked as well through the simulation.


2013 ◽  
Vol 702 ◽  
pp. 263-268 ◽  
Author(s):  
Katarina Monkova

The article deals with surface roughness characteristics of polyamide APA after the turning by tool with linear cutting edge. The experiment was centred on the obtaining of Ra and Rz dependences on both cutting speed and feed per revolution concurrently. Polyamide APA allows the production of very large structural and semi-structural parts for automotive and non-automotive applications including interior, exterior and under-the-hood applications. It also allows reducing the total cost of production, especially for lower volume parts. Therefore, the authors deals with the possibility to work this material. The special cutting tool was selected in regard to the author´s previous experiments. The surfaces of investigated metal samples, which were machined by the tool with linear cutting edge, achieved very good properties, so it was the reason for the using of this tool at the experiments presented in the article. Obtained values of surface roughness characteristics were worked up by means of regression analysis and according to the rules for statistical data processing. The results are arranged into the table and consequently into the graphical presentations. The shapes of chips at the machining within various working conditions are shown at the end of the article. Next experiments will be focused on the machining of other types materials with the same unconventional cutting tool and for the obtaining new data that characterize the machined surface.


2016 ◽  
Vol 862 ◽  
pp. 26-32 ◽  
Author(s):  
Michaela Samardžiová

There is a difference in machining by the cutting tool with defined geometry and undefined geometry. That is one of the reasons of implementation of hard turning into the machining process. In current manufacturing processes is hard turning many times used as a fine finish operation. It has many advantages – machining by single point cutting tool, high productivity, flexibility, ability to produce parts with complex shapes at one clamping. Very important is to solve machined surface quality. There is a possibility to use wiper geometry in hard turning process to achieve 3 – 4 times lower surface roughness values. Cutting parameters influence cutting process as well as cutting tool geometry. It is necessary to take into consideration cutting force components as well. Issue of the use of wiper geometry has been still insufficiently researched.


2014 ◽  
Vol 474 ◽  
pp. 369-374
Author(s):  
Jana Knedlova ◽  
Libuše Sýkorová ◽  
Vladimír Pata ◽  
Martina Malachová

The article focuses on the field of PMMA laser micromachining at change of the technological parameters. The aim was to evaluate machined surface roughness at different setting of DPI definition (number of dots paths on square inch). Commercial CO2laser Mercury L-30 by firm LaserPro, USA was used for experimental machining. Ray of laser could be focused on mark diameter d=185 mm.


2012 ◽  
Vol 622-623 ◽  
pp. 352-356 ◽  
Author(s):  
Peter Monka

The paper deals with the experiments realized by means of cutting tool with linear cutting edge not parallel with the axis of the workpiece in order to be observed the suitable values of surface roughness characteristics in dependency on the feed and cutting speed. During experiments were machined three types of steels. Acquired data were statistical processed by regression analysis. The results of the measurements show that the investigated cutting tool enables to secure the same values of surface profile characteristics of steels as a classical cutting tool at finishing with the significant increase of the feed per revolution. It directly influences length of the technological operation time which is several times shortened and so the machining productivity can increase.


2015 ◽  
Vol 667 ◽  
pp. 3-8
Author(s):  
Ze Fei Chen ◽  
Lang Zhang

On the basis of uneven copper surface roughness during lathering in common CNC lather, analyze the cutting ways of copper spherical surface and the cutting layer different from cylindrical surface lathing. The cutting direction of cylindrical surface lathing is constant, and its cutting layer is too. However, the direction of spherical surface lathing varies along the tangent of its cutting point continually, and the working cutting edge angle and the working minor cutting edge angle of the cutting tool vary too, so the theoretical surface roughness is affected. The cutting layer of spherical surface lathing varies continually, so does the cutting depth of its every cutting point. Through analysis and experiments, prove that cutting force variety is caused by the gradient variety of cutting depth, which leads to increase of the surface rough and its unevenness. Based on the research result, design some new cutting path to improve the surface roughness of copper spherical surface lathing, and obtain good effect.


2014 ◽  
Vol 657 ◽  
pp. 53-57 ◽  
Author(s):  
Sándor Ravai Nagy ◽  
Ioan Paşca ◽  
Mircea Lobonțiu ◽  
Mihai Banica

Machining of Complex Concave or Convex Surfaces Requires the Use of Ball End Milling Cutters. Obtaining the Expected Surface Quality Compete Various Technological Factors which should be Taken into Account. Following the Machining of the Surface with Different Inclination Angles between the Cutting Tool Axes and the Machined Surface, Significant Changes of the Surface Roughness have been Observed. Based on the Tests Performed, we can Determine the Range of the Tool Inclination Angle, which is the Best for the Surface Quality. we have also Made a Correlation between the Cutting Speeds, Inclination Angle of the Cutting Tool Toward the Machined Surface for an Obtained Surface Quality. the Presented Results are Based on Experimental Research in Industrial Conditions by Using CNC Machine Tools with 5 Axes. the Tests have been Performed on the C45 Material, Heat Treated to 34HRC.


2021 ◽  
Author(s):  
Raqibah Najwa Mudzaffar ◽  
Mohamad Faiz Izzat Bahauddin ◽  
Hanisah Manshor ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Nik Akmar Rejab ◽  
...  

Abstract The zirconia toughened alumina enhanced with titania and chromia (ZTA-TiO2-Cr2O3) ceramic cutting tool is a new cutting tool that possesses good hardness and fracture toughness. However, the performance of the ZTA-TiO2-Cr2O3 cutting tool continues to remain unknown and therefore requires further study. In this research, the wearing of the ZTA-TiO2-Cr2O3 cutting tool and the surface roughness of the machined surface of stainless steel 316L was investigated. The experiments were conducted where the cutting speeds range between 314 to 455 m/min, a feed rate from 0.1 to 0.15 mm/rev, and a depth of cut of 0.2 mm. A CNC lathe machine was utilised to conduct the turning operation for the experiment. Additionally, analysis of the flank wear and crater wear was undertaken using an optical microscope, while the chipping area was observed via scanning electron microscopy (SEM). The surface roughness of the machined surface was measured via portable surface roughness. The lowest value of flank wear, crater wear and surface roughness obtained are 0.044 mm, 0.45 mm2, and 0.50 µm, respectively at the highest cutting speed of 455 m/min and the highest feed rate of 0.15 mm/rev. The chipping area became smaller with the increase of feed rate from 0.10 to 0.15 mm/rev and larger when the feed rate decrease. This was due to the reduced vibrations at the higher spindle speed resulting in a more stable cutting operation, thereby reducing the value of tool wear, surface roughness, and the chipping area.


2018 ◽  
Vol 779 ◽  
pp. 153-158
Author(s):  
Phacharadit Paengchit ◽  
Charnnarong Saikaew

This work investigated the influences of cutting speed and feed rate on surface roughness in hard turning of AISI 4140 chromium molybdenum steel bar using mixed ceramic inserts Al2O3+TiC under dry condition for automotive industry applications. Turning experiments were conducted by varying cutting speed ranging from 150 to 220 m/min and feed rate ranging from 0.06 to 1 mm/rev. General factorial design was used to analyze the data set of surface roughness and determine statistically significant process factors based on analysis of variance results. The results showed that average surface roughness was significantly affected by feed rate and interaction between cutting speed and feed rate at the level of significance of 0.05. An optimal operating condition for hard turning of AISI 4140 with the ceramic cutting tool that produced a minimum machined surface roughness was obtained at cutting speed of 220 m/min and 0.06 mm/rev.


Sign in / Sign up

Export Citation Format

Share Document