Vehicle Type Recognition Using in Geomagnetic Data Based on Neural Network

2013 ◽  
Vol 313-314 ◽  
pp. 1380-1384
Author(s):  
Rui Qing Kang ◽  
Xi Sheng Li ◽  
Hai Jian Wang

Vehicle Type Recognition is the base and key point for Intelligent Transportation,Through the geomagnetic disturbance data of different vehicle type, constituting a sort of BP neural networks, and optimizing it using Genetic Algorithm. The result is good. This method can raise the recognition rate effectively and reduce the quantity of calculating. It has strong practicability.

2000 ◽  
Vol 176 ◽  
pp. 135-136
Author(s):  
Toshiki Aikawa

AbstractSome pulsating post-AGB stars have been observed with an Automatic Photometry Telescope (APT) and a considerable amount of precise photometric data has been accumulated for these stars. The datasets, however, are still sparse, and this is a problem for applying nonlinear time series: for instance, modeling of attractors by the artificial neural networks (NN) to the datasets. We propose the optimization of data interpolations with the genetic algorithm (GA) and the hybrid system combined with NN. We apply this system to the Mackey–Glass equation, and attempt an analysis of the photometric data of post-AGB variables.


2002 ◽  
Vol 12 (01) ◽  
pp. 31-43 ◽  
Author(s):  
GARY YEN ◽  
HAIMING LU

In this paper, we propose a genetic algorithm based design procedure for a multi-layer feed-forward neural network. A hierarchical genetic algorithm is used to evolve both the neural network's topology and weighting parameters. Compared with traditional genetic algorithm based designs for neural networks, the hierarchical approach addresses several deficiencies, including a feasibility check highlighted in literature. A multi-objective cost function is used herein to optimize the performance and topology of the evolved neural network simultaneously. In the prediction of Mackey–Glass chaotic time series, the networks designed by the proposed approach prove to be competitive, or even superior, to traditional learning algorithms for the multi-layer Perceptron networks and radial-basis function networks. Based upon the chosen cost function, a linear weight combination decision-making approach has been applied to derive an approximated Pareto-optimal solution set. Therefore, designing a set of neural networks can be considered as solving a two-objective optimization problem.


SINERGI ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 29
Author(s):  
Widi Aribowo

Load shedding plays a key part in the avoidance of the power system outage. The frequency and voltage fluidity leads to the spread of a power system into sub-systems and leads to the outage as well as the severe breakdown of the system utility.  In recent years, Neural networks have been very victorious in several signal processing and control applications.  Recurrent Neural networks are capable of handling complex and non-linear problems. This paper provides an algorithm for load shedding using ELMAN Recurrent Neural Networks (RNN). Elman has proposed a partially RNN, where the feedforward connections are modifiable and the recurrent connections are fixed. The research is implemented in MATLAB and the performance is tested with a 6 bus system. The results are compared with the Genetic Algorithm (GA), Combining Genetic Algorithm with Feed Forward Neural Network (hybrid) and RNN. The proposed method is capable of assigning load releases needed and more efficient than other methods. 


Author(s):  
Yunong Zhang ◽  
Ning Tan

Artificial neural networks (ANN), especially with error back-propagation (BP) training algorithms, have been widely investigated and applied in various science and engineering fields. However, the BP algorithms are essentially gradient-based iterative methods, which adjust the neural-network weights to bring the network input/output behavior into a desired mapping by taking a gradient-based descent direction. This kind of iterative neural-network (NN) methods has shown some inherent weaknesses, such as, 1) the possibility of being trapped into local minima, 2) the difficulty in choosing appropriate learning rates, and 3) the inability to design the optimal or smallest NN-structure. To resolve such weaknesses of BP neural networks, we have asked ourselves a special question: Could neural-network weights be determined directly without iterative BP-training? The answer appears to be YES, which is demonstrated in this chapter with three positive but different examples. In other words, a new type of artificial neural networks with linearly-independent or orthogonal activation functions, is being presented, analyzed, simulated and verified by us, of which the neural-network weights and structure could be decided directly and more deterministically as well (in comparison with usual conventional BP neural networks).


1993 ◽  
Vol 32 (01) ◽  
pp. 55-58 ◽  
Author(s):  
M. N. Narayanan ◽  
S. B. Lucas

Abstract:The ability of neural networks to predict the international normalised ratio (INR) for patients treated with Warfarin was investigated. Neural networks were obtained by using all the predictor variables in the neural network, or by using a genetic algorithm to select an optimal subset of predictor variables in a neural network. The use of a genetic algorithm gave a marked and significant improvement in the prediction of the INR in two of the three cases investigated. The mean error in these cases, typically, reduced from 1.02 ± 0.29 to 0.28 ± 0.25 (paired t-test, t = −4.71, p <0.001, n = 30). The use of a genetic algorithm with Warfarin data offers a significant enhancement of the predictive ability of a neural network with Warfarin data, identifies significant predictor variables, reduces the size of the neural network and thus the speed at which the reduced network can be trained, and reduces the sensitivity of a network to over-training.


1997 ◽  
Vol 1 (2) ◽  
pp. 345-356 ◽  
Author(s):  
Z. Rao ◽  
D. G. Jamieson

Abstract. The increasing incidence of groundwater pollution has led to recognition of a need to develop objective techniques for designing reniediation schemes. This paper outlines one such possibility for determining how many abstraction/injection wells are required, where they should be located etc., having regard to minimising the overall cost. To that end, an artificial neural network is used in association with a 2-D or 3-D groundwater simulation model to determine the performance of different combinations of abstraction/injection wells. Thereafter, a genetic algorithm is used to identify which of these combinations offers the least-cost solution to achieve the prescribed residual levels of pollutant within whatever timescale is specified. The resultant hybrid algorithm has been shown to be effective for a simplified but nevertheless representative problem; based on the results presented, it is expected the methodology developed will be equally applicable to large-scale, real-world situations.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 105 ◽  
Author(s):  
Fanjie Meng ◽  
Xinqing Wang ◽  
Faming Shao ◽  
Dong Wang ◽  
Xia Hua

Deep-learning convolutional neural networks (CNNs) have proven to be successful in various cognitive applications with a multilayer structure. The high computational energy and time requirements hinder the practical application of CNNs; hence, the realization of a highly energy-efficient and fast-learning neural network has aroused interest. In this work, we address the computing-resource-saving problem by developing a deep model, termed the Gabor convolutional neural network (Gabor CNN), which incorporates highly expression-efficient Gabor kernels into CNNs. In order to effectively imitate the structural characteristics of traditional weight kernels, we improve upon the traditional Gabor filters, having stronger frequency and orientation representations. In addition, we propose a procedure to train Gabor CNNs, termed the fast training method (FTM). In FTM, we design a new training method based on the multipopulation genetic algorithm (MPGA) and evaluation structure to optimize improved Gabor kernels, but train the rest of the Gabor CNN parameters with back-propagation. The training of improved Gabor kernels with MPGA is much more energy-efficient with less samples and iterations. Simple tasks, like character recognition on the Mixed National Institute of Standards and Technology database (MNIST), traffic sign recognition on the German Traffic Sign Recognition Benchmark (GTSRB), and face detection on the Olivetti Research Laboratory database (ORL), are implemented using LeNet architecture. The experimental result of the Gabor CNN and MPGA training method shows a 17–19% reduction in computational energy and time and an 18–21% reduction in storage requirements with a less than 1% accuracy decrease. We eliminated a significant fraction of the computation-hungry components in the training process by incorporating highly expression-efficient Gabor kernels into CNNs.


2012 ◽  
Vol 263-266 ◽  
pp. 3374-3377
Author(s):  
Hua Liang Wu ◽  
Zhen Dong Mu ◽  
Jian Feng Hu

In the application of the classification, neural networks are often used as a classification tool, In this paper, neural network is introduced on motor imagery EEG analysis, the first EEG Hjort conversion, and then the brain electrical signal is converted into the frequency domain, Finally, the fisher distance for feature extraction in the EEG analysis, identification of the study sample was 97 86% recognition rate is 80% of the test sample.


Sign in / Sign up

Export Citation Format

Share Document