Researches on Drought Resistance of Mulberry Trees Applied to Vegetation Recovery Engineering in Chongqing Section of the Jialing River Basin, China

2013 ◽  
Vol 316-317 ◽  
pp. 207-213
Author(s):  
Xiao Hui Huang ◽  
Da Lan Feng ◽  
Yun Liu ◽  
Yang Hui Geng

To examine possible effects of soil water conditions in summer in Chongqing section of Jialing River Basin on mulberry trees, we grew potted mulberry in a greenhouse under three soil water regimes designed to simulate normal irrigation (CK), moderate drought stress (T1) and extraordinary drought stress (T2). The results showed the following. 1) With drought stress increasing, the heights, base diameters and root biomass all decreased significantly. The root/shoot ratio, specific root area and root activity of mulberry on the whole showed an increasing trend as drought stress increasing. The leaf water potential of mulberry after drought stress on the whole decreased significantly compared with CK; 2)With the elongation of treatment time, the heights, base diameters root biomass and root/shoot ratios of mulberry in the three treatment groups still increased to different degrees. The root activity of mulberry in each treatment group first increased and then decreased basically, but still maintained a higher level compared with CK, moreover, the leaf water potential of mulberry also decreased gradually on the whole. We concluded that under drought stress conditions the growth of mulberry will be inhibited in a way, but the plant can actively improve its absorption ability by some ways, thereby maintaining its normal physiological metabolism, accordingly demonstrating strong drought resistance.

Trees ◽  
2005 ◽  
Vol 19 (6) ◽  
pp. 712-721 ◽  
Author(s):  
Chun-Wang Xiao ◽  
Osbert J. Sun ◽  
Guang-Sheng Zhou ◽  
Jing-Zhu Zhao ◽  
Gang Wu

2014 ◽  
Vol 1 (1) ◽  
pp. 1013-1072
Author(s):  
D. R. Smart ◽  
S. Cosby Hess ◽  
R. Plant ◽  
O. Feihn ◽  
H. Heymann ◽  
...  

Abstract. The geoscience component of terroir in wine grape production continues to be criticized for its quasi-mystical nature, and lack of testable hypotheses. Nonetheless, recent relational investigations are emerging and most involve water availability as captured by available water capacity (AWC, texture) or plant available water (PAW) in the root zone of soil as being a key factor. The second finding emerging may be that the degree of microscale variability in PAW and other soil factors at the vineyard scale renders larger regional characterizations questionable. Cimatic variables like temperature are well mixed, and its influence on wine characteristic is fairly well established. The influence of mesogeology on mesoclimate factors has also been characterized to some extent. To test the hypothesis that vine water status mirrors soil water availability, and controls fruit sensory and chemical properties at the vineyard scale we examined such variables in a iconic, selectively harvested premium winegrape vineyard in the Napa Valley of California during 2007 and 2008 growing seasons. Geo-referenced data vines remained as individual study units throughout data gathering and analysis. Cartographic exercises using geographic information systems (GIS) were used to vizualize geospatial variation in soil and vine properties. Highly significant correlations (P < 0.01) emerged for pre-dawn leaf water potential (ΨPD), mid-day leaf water potential (ΨL) and PAW, with berry size, berry weight, pruning weights (canopy size) and soluble solids content (°Brix). Areas yielding grapes with perceived higher quality had vines with (1) lower leaf water potential (LWP) both pre-dawn and mid-day, (2) smaller berry diameter and weight, (3) lower pruning weights, and (4) higher °Brix. A trained sensory panel found grapes from the more water-stressed vines had significantly sweeter and softer pulp, absence of vegetal character, and browner and crunchier seeds. Metabolomic analysis of the grape skins showed significant differences in accumulation of amino acids and organic acids. Data vines were categorized as non-stressed (ΨPD ≥ −7.9 bars and ΨL ≥ −14.9 bars) and stressed (ΨPD ≤ −8.0 bars and ΨL ≤ −15.0 bars) and subjected to analysis of variance. Significant separation emerged for vines categorized as non-stressed versus stressed at véraison, which correlated to the areas described as producing higher and lower quality fruit. This report does not advocate the use of stress levels herein reported. The vineyard was planted to a vigorous, deep rooted rootstock (V. rupestris cv. St. George), and from years of management is known to be able to withstand stress levels of the magnitude we observed. Nonetheless, the results may suggest there is not a linear relationship between physiological water stress and grape sensory characteristics, but rather the presence of an inflection point controlling grape composition as well as physiological development.


1989 ◽  
Vol 16 (3) ◽  
pp. 241 ◽  
Author(s):  
NZ Saliendra ◽  
FC Meinzer

Stomatal conductance, leaf and soil water status, transpiration, and apparent root hydraulic conductance were measured during soil drying cycles for three sugarcane cultivars growing in containers in a greenhouse. At high soil moisture, transpiration and apparent root hydraulic conductance differed considerably among cultivars and were positively correlated, whereas leaf water potential was similar among cultivars. In drying soil, stomatal and apparent root hydraulic conductance approached zero over a narrow (0.1 MPa) range of soil water suction. Leaf water potential remained nearly constant during soil drying because the vapor phase conductance of the leaves and the apparent liquid phase conductance of the root system declined in parallel. The decline in apparent root hydraulic conductance with soil drying was manifested as a large increase in the hydrostatic pressure gradient between the soil and the root xylem. These results suggested that control of stomatal conductance in sugarcane plants exposed to drying soil was exerted primarily at the root rather than at the leaf level.


1988 ◽  
Vol 68 (3) ◽  
pp. 597-606 ◽  
Author(s):  
R. CEULEMANS ◽  
I. IMPENS ◽  
M. C. LAKER ◽  
F. M. G. VAN ASSCHE ◽  
R. MOTTRAM

With the objective to evaluate and compare different physiological plant parameters as indicators of water stress, net CO2 exchange rate (NCER), leaf temperature, predawn and daytime leaf water potential were monitored diurnally on last fully expanded leaves of corn (Zea mays L.) plants under two different soil water treatments (stressed and nonstressed) during a 10-d period at anthesis in a semi-arid region in South Africa. Profile available water capacity (PAWC) was used to express the soil water contents during the experiments. A significant decrease in NCER was noticed as soon as 30% of PAWC was extracted, i.e. 2 or 3 d after irrigation. Although the results were limited to a short, well-defined measuring period, NCER, and especially NCER at noon, seemed to be a more sensitive and more reliable indicator of corn water stress than, for example, predawn or daytime leaf water potential, at least under the conditions studied here. This reduction in NCER might have a significant impact on total biomass, rooting density, flower and ear formation.Key words: Corn, irrigation scheduling, photosynthesis, leaf water potential, profile available water capacity, soil water content


Sign in / Sign up

Export Citation Format

Share Document