Corrosion of 434 Stainless Fibres in Hydrochloric Acid

2013 ◽  
Vol 318 ◽  
pp. 312-315
Author(s):  
Xiong Yang ◽  
Jian Tong ◽  
Xiao Ming Li

The effects of concentration and temperature of hydrochloric acid and etching time on the corrosion rates of 434 stainless steel fibres are investigated by using weight loss method,The results show that with the concentration of hydrochloric acid increase,the temperature of hydrochloric acid rise, etching time prolonging, the corrosion rate of 434 stainless steel fibres is increased, and the corrosion rate of smalldimension of 434 stainless steel fibres faster.Though Cl- of hydrochloric acid doesn’t take direct part in the reaction,the corrosion rate is significantly accelerated.

Author(s):  
Meryanalinda Meryanalinda ◽  
Dedy Rachman Ardian ◽  
Mochammad Shocib ◽  
Ahmad Yasin

Corrosion is a process of degradation metal quality which is very detrimental in the industry. Especially in an industries related to utilization of acidic liquids such assulfuric acid, hydrochloric acid, etc. If corrosion rate of carbon steel can be estimated, the prediction of remaining life of carbon steel, and the preventive methods of corrosionwould be more appropriate. This will reduce technical, economic and aesthetic losses. The aims of this study was to determine corrosion rate of carbon steel in sulfuric acid. This study used ASTM A 387 Grade 12 and ASTM A 283 Grade A carbon steel type fortank material, where one material is represented by 5 specimen. The corrosion rate of Specimens were measured by the weight loss method for 31 days. The 5 specimens were divided into 3 regions where specimens no.1 and 2 were immersed in  sulfuric acid , specimens no.3 were in the middle area or zone level (partially immersed), and specimens no.4 and 5 were not immersed in sulfuric acid. The highst corrosion rate occured on specimen No.3 with maximum corrosion rate was 0,097 mm/y for ASTM A 387 Gr 12 and 0,096 mm/y untuk material ASTM A 283 Gr A. The results of corrosion rate on ASTM A 387 Grade 12 material are lower than corrosion rate of ASTM A 283 Grade A material. This is caused by presence of Mo and Cr alloy elements in ASTM A 387 Grade 12.


2014 ◽  
Vol 11 (4) ◽  
pp. 1577-1582
Author(s):  
Baghdad Science Journal

The corrosion behavior of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) has been studied. The corrosion inhibition of copper and carbon steel in 1M concentration of hydrochloric acid (HCl) and sulphuric acid (H2SO4) by Ciprofloxacin has been investigated. Specimens were exposed in the acidic media for 7 hours and corrosion rates evaluated by using the weight loss method. The effect of temperature (from 283 ºK to 333 ºK), pH (from 1to 6), inhibitor concentration (10-4 to 10-2) has been studied. It was observed that sulphuric acid environment was most corrosive to the metals because of its oxidizing nature, followed by hydrochloric acid. The rate of metal dissolution increased with increasing exposure time. Corrosion rates of carbon steel in the acidic media found to be higher.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
W. B. Wan Nik ◽  
S. Syahrullail ◽  
R. Rosliza ◽  
M. M. Rahman ◽  
M. F. R. Zulkifli

The aim of this study is to determine the corrosion effect of palm oil methyl ester (POME) on aluminium alloy 5083 (AA5083). The static immersion test was carried out at 60°C for 68 days according to ASTM G–31–72. The corrosion analysis was done by using weight loss method and electrochemical test. The result from weight loss method shows the decreasing in weight loss of AA5083 which signifies the ability of POME to reduce corrosion rate. The electrochemical test shows the decreasing in polarization resistance,Rp, while the corrosion current densities, Icorr, increase. The corrosion rate reduces from 2.250mpy to 0.1946mpy. The low concentration of fatty acid C18:2 and high anti oxidant element contributes to the reduction of corrosion rate of AA5083 in POME.


2011 ◽  
Vol 233-235 ◽  
pp. 648-651
Author(s):  
Ai Jun Wei ◽  
Bei Feng ◽  
Xin Zhang ◽  
Fu Yong Huo

In this corrosion test, simulated brine is used as corrosion medium, added different concentrations of aloe juice. Static weight-loss method is employed, meanwhile, we calculated corrosion rate of Q235 steel and researched on the corrosion inhibition effect of aloe in different temperatures. Results show that aloe is a good inhibitor, rate of corrosion inhibition can reach 80% or more and suitable for the temperature of work environment is less than 60 °C.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Arman Abdullah ◽  
Nordin Yahaya ◽  
Norhazilan Md Noor ◽  
Rosilawati Mohd Rasol

Various cases of accidents involving microbiology influenced corrosion (MIC) were reported by the oil and gas industry. Sulfate reducing bacteria (SRB) have always been linked to MIC mechanisms as one of the major causes of localized corrosion problems. In this study, SRB colonies were isolated from the soil in suspected areas near the natural gas transmission pipeline in Malaysia. The effects of ATCC 7757 and consortium of isolated SRB upon corrosion on API 5L X-70 carbon steel coupon were investigated using a weight loss method, an open circuit potential method (OCP), and a potentiodynamic polarization curves method in anaerobic conditions. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were then used to determine the corrosion morphology in verifying the SRB activity and corrosion products formation. Results from the study show that the corrosion rate (CR) of weight loss method for the isolated SRB is recorded as 0.2017 mm/yr compared to 0.2530 mm/yr for ATCC 7757. The Tafel plot recorded the corrosion rate of 0.3290 mm/yr for Sg. Ular SRB and 0.2500 mm/yr forDesulfovibrio vulgaris. The results showed that the consortia of isolated SRB were of comparable effects and features with the single ATCC 7757 strain.


ROTOR ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Naufan Arviansyah ◽  
Sumarji Sumarji ◽  
Digdo Listyadi Setyawan

This research have a purpuse to know corrosion rate in pipe X52 and A53 at oil sludge media caused BS and W. Corrosion is a damage of metal that occurs because reaction between metal with environtment and produce unwanted of corrosion product. Pipe X52 and A53 is a type of low carbon steel that use for fluid transportation system in industry. Oil sludge is a sediment of crude oil from main gathering storage and containing variouses elements. Oil sludge have a one of element is Basic Sediment and Water that is can make corrosion happen to distribution pipes. Measuring Method used in this research is weight loss method. The result of corrosion rate in Oil Sludge media containing 30,17% BS and W for pipe A53 is 1,64 x 10-2 mmpy and the result for pipa X52 is 2,47 x 10-2 mmpy. The result of corrosion rate in Oil Sludge media containing 60,67% BS and W for pipe A53 is 2,12 x 10-2 mmpy and for pipe X52 the result is 3,13 x 10-2 mmpy. The result of this research showed pipe A53 have more resistance than pipe X52. The corrosion is classified as uniform corrosion. Keywords : A53, Weight Loss, Oil Sludge, X52.


2015 ◽  
Vol 713-715 ◽  
pp. 2839-2842
Author(s):  
Fu Rong Zhou ◽  
Hu Zhang

Diisopropylamine methyl urea (DMU) was synthesized by raw materials of diisopropylamine, paraformaldehyde and urea in acid media, the effect of synthesis conditions including the dosage of hydrochloric acid, the mole ratio of the materials and the reaction temperature on the product yield were studied. A corrosion inhibitor formula that contained DMU, cyclohexylamine, ethanolamine and propiolic alcohol were designed, and static weight-loss method, Tafel polarization curve method were used to evaluate the corrosion inhibitory performance. The results showed that the best synthetic conditions for DMU were the mole ratio of diisopropylamine, paraformaldehyde and urea, 1:1.2:1; reaction temperature, 80°C; the mole ratio of hydrochloric acid and diisopropylamine 1.2:1. The product yield in this condition was 90.23%, the melting point was 230°C. The results of static weight-loss method revealed that DMU, cyclohexylamine, ethanolamine and propiolic alcohol had great synergy effect, the inhibition efficiency of gas phase static weight-loss method reached to 97.61%, and attained 85.20% in liquid phase static weight-loss method. The results of Tafel polarization curve method indicated that the corrosion inhibitor formula contained DMU had a good inhibitory effect to the cathode electrochemical corrosion process of A3 carbon steel.


2010 ◽  
Vol 7 (3) ◽  
pp. 942-946 ◽  
Author(s):  
B. Anand ◽  
V. Balasubramanian

The inhibition of corrosion of mild steel usingPiper nigrumL in different acid medium by weight loss method was investigated. The corrosion inhibition was studied in hydrochloric acid and sulphuric acid by weight loss method at different time interval at room temperature. The result showed that the corrosion inhibition efficiency of this compound was found to vary with different time interval and different acid concentration. Also, it was found that the corrosion inhibition behavior ofPiper nigrumL is greater in sulphuric acid than hydrochloric acid. So,Piper nigrumL can be used as a good inhibitor for preventing mild steel material.


Author(s):  
Destri Muliastri ◽  
Devi Eka Septiyani ◽  
Naufal Afif ◽  
Vania Tingting Sirenden ◽  
Januar Nur Rohmah Suprihartini

AISI 1070 steel is a material that has corrosion when it reacts with the environment. One way to inhibit the corrosion rate is by using organic inhibitors. The organic inhibitors used mango leaves and mango rinds with variations in the concentration of organic inhibitors of 0%, 6%, and 8%, respectively. This study aimed to determine the effectiveness of mango leaf extract and mango rinds as an inhibitor against the corrosion rate of AISI 1070 Steel. The extraction was carried out using the Maceration Method. Fourier Transform Infrared (FTIR), Potenzyodinamic, and Weight Loss tests were carried out in this study.  FTIR results show that both mango rinds and mango leaf have ingredients that were able to inhibit the corrosion rate, such as flavonoid functional groups including C – H, C = O, and C – O. Using the weight-loss method, the best corrosion rate was found in the mango rinds extract with a concentration of 8 mL, which was 31.784 mm/year with an inhibition efficiency of 92%. The highest corrosion rate was in 2M H2SO4 solution using potentiodynamic, without a mixture of inhibitors, that is 0.15589478 mm/year.


2020 ◽  
Author(s):  
vahid pourzarghan ◽  
bahman fazeli nasab

Abstract Background: The phenomenon of bronze disease is considered as the most important factor in the destruction of bronze objects. Different methods have been proposed to cope with it. The most important inhibitors used in this regard are BTA and AMT(5-ami- no-2-mercapto-1,3,4-thiadiazole). While these inhibitors control the corrosion, they are toxic and cancerous. In the ideal conditions, these inhibitors are able to slow down the activity of chlorine ion, but they leave some side effects after a period of treatment. Today, plant extracts are used for this purpose. In this study, Robinia pseudoacania L extract was selected for this purpose.Material and methods: Natural inhibitor of Robinia fruit at concentrations of 200 ppm to 1800 ppm was evaluated in a corrosive solution of sodium chloride 0.5 M on a bronze alloy with a percentage similar to ancient alloys (Cu-10Sn) using potentiostat, weight loss method, and humidifier area.Results: Given the data derived from potentiostate device showed that Robinia pseudoacania L Inhibitory power at 1000 ppm with corrosion rate of 12.78% is 55% and the classic method of weight loss inhibitory power after four week at 1800 ppm Robinia pseudoacania L in contrast a corrosive solution of sodium chloride 0.5 M is 92% for bronze alloy (Cu-10Sn). In addition, SEM images suggest that the formation of film on the coupon has been flacked. While the results of the analyses suggest the inhibitory power of Robinia pseudoacania L, granular corrosion is evident on the coupons surfaces in SEM-EDX(Scanning Electron Microscope-Energy Dispersive X-rays) images and analysis.Conclusion: According to the SEM-EDX method, the acetate potential device and the classical weight loss method on bronze (Cu-10sn), the results show that the corrosion rate in the acetate potential method is 55%, while in the classical method the reduction is shown. The weight of this figure reaches 92%. It is important to note that the SEM images show a kind of grain boundary separation on the coupons of this alloy, which is due to the presence of this substance in the corrosive solution of sodium chloride.


Sign in / Sign up

Export Citation Format

Share Document