Research Progress of Low-Temperature SCR DeNOx Catalysts

2013 ◽  
Vol 320 ◽  
pp. 629-638 ◽  
Author(s):  
Yun Sang Feng ◽  
Shao Guang Liu ◽  
Cheng Wu Chen ◽  
He Yong Zhao ◽  
Yu Song Xu

Low-temperature SCR DeNOx process is considered to be a potential technique to meet the stringent environment regulations. It can avoid the problem such as blocking and eroding often generated in medium temperature, polluting and poisoning caused by alkali elements and so on. In this paper, a review of DeNOx catalysts about noble metals, molecular sieve, carbon-based and metal oxides catalyst was presented. The affecting factors of the low-temperature activation were comprehensively expounded, such as precursor introduction method, preparation method, supporter pretreatment and catalyst structure. Then mechanism of SO2 poisoning and effect of active compositions were analyzed. The dual effect of SO2 on the activity of low temperature catalysts mainly results from the formation of certain sulfur-containing species on catalyst surface. Water vapor decreased the number of available active sites attributed to competitive adsorption among H2O and other reactants. Moreover, the co-existence of H2O and SO2 resulted in the decrease of activity obviously. So the way to improve resistance of SO2 and H2O poisoning was summed up. Finally, future research and development directions in the developing low-temperature SCR for removal of NOx technology were proposed.

2013 ◽  
Vol 448-453 ◽  
pp. 874-880
Author(s):  
Xiang Gou ◽  
Kai Zhang ◽  
Lian Sheng Liu ◽  
Wen Yong Liu ◽  
Zi Fang Wang ◽  
...  

The method of selective catalytic reduction (SCR) is now one of the mature applications of NOx removal technology, which can meet the practical requirements due to the more stringent laws and regulations on air pollutions. However, the active temperature of traditional SCR catalyst is usually in the temperature range of 300-400°C, which limits the condition of SCR unit. Therefore, low temperature SCR method has caused concern for the scholars in recent years. Catalyst is the key to SCR unit because its performance has a direct influence on the catalytic efficiency. This paper summarizes the research progress of metal oxide catalyst of low temperature SCR. In addition, the future research work is discussed.


2013 ◽  
Vol 448-453 ◽  
pp. 868-873
Author(s):  
Xiang Gou ◽  
Kai Zhang ◽  
Lian Sheng Liu ◽  
Wen Yong Liu ◽  
Zi Fang Wang ◽  
...  

The method of selective catalytic reduction (SCR) is now one of the mature applications of NOx removal technology, which has the higher denitration rate, less secondary pollution and lower cost. However, the active temperature of traditional SCR catalyst is usually in the temperature range of 300-400°C. This kind of installation leads to the reduction of catalyst activity, and the shortage of working life. The development of efficient and stable performance of catalyst at low temperature has become a key point in the research of SCR.This paper reviews the research progress of carbon catalyst of low temperature SCR. In addition, the future research work is discussed.


2016 ◽  
Vol 6 (16) ◽  
pp. 6294-6304 ◽  
Author(s):  
Tao Zhang ◽  
Feng Qiu ◽  
Huazhen Chang ◽  
Xiang Li ◽  
Junhua Li

Cu-SSZ-13 catalysts with similar Si/Al and Cu/Al ratios were prepared by aqueous solution ion-exchange (Cu-SSZ-13-I) and one-pot synthesis (Cu-SSZ-13-O) methods.


2018 ◽  
Vol 54 (30) ◽  
pp. 3783-3786 ◽  
Author(s):  
Jianwei Fan ◽  
Menghua Lv ◽  
Wei Luo ◽  
Xianqiang Ran ◽  
Yonghui Deng ◽  
...  

A subtle catalyst is designed with CuO and MnO2 active centers on the surface of mesoporous titania for low-temperature SCR.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 123 ◽  
Author(s):  
Guangli Liu ◽  
Dongtai Han ◽  
Jie Cheng ◽  
Yongshi Feng ◽  
Wenbin Quan ◽  
...  

Hydrocarbons as reductants show promising results for replacing NH3 in SCR technology. Therefore, considerable interest exists for developing low-temperature (<200 °C) and environmentally friendly HC-SCR catalysts. Hence, C2H4 was examined as a reductant using activated-carbon-supported MnOx-based catalyst in low-temperature SCR operation. Its sensitivity to Mn concentration and operating temperature was parametrically studied, the results of which showed that the catalyst activity followed the order of 130 °C > 150 °C > 180 °C with an optimized Mn concentration near 3.0 wt.%. However, rapid deactivation of catalytic activity also occurred when using C2H4 as the reductant. The mechanism of deactivation was explored and is discussed herein in which deactivation is attributed to two factors. The manganese oxide was reduced to Mn3O4 during reaction testing, which contained relatively low activity compared to Mn2O3. Also, increased crystallinity of the reduced manganese and the formation of carbon black occurred during SCR reaction testing, and these constituents on the catalyst’s surface blocked pores and active sites from participating in catalytic activity.


2020 ◽  
Vol 213 ◽  
pp. 01012
Author(s):  
Yufei Zhang

Selective catalytic reduction (SCR) of nitrogen oxides (NOx) using ammonia (NH3) is currently the main technology for flue gas denitration. However, the currently widely used commercial catalysts (such as V2O5-WO3 / TiO2, V2O5-MoO3 / TiO2, etc.) have the disadvantages of high operating temperature, narrow active temperature window, and high catalytic cost. Therefore, in recent years, researchers have devoted themselves to the development of low-cost and efficient low-temperature SCR catalytic materials. This paper summarizes the research progress of low-temperature (less than 250 °C) selective catalytic reduction of NOx by unsupported metal oxide catalysts, supported metal oxide catalysts, precious metals, and molecular sieve catalysts. Among them, manganese-based catalysts show good low-temperature selectivity and stability, and have good application prospects. Finally, the research directions of manganese low temperature SCR catalysts are prospected and theoretically designed based on the existing problems.


2020 ◽  
Vol 379 ◽  
pp. 122398 ◽  
Author(s):  
Jie Yang ◽  
Shan Ren ◽  
Tianshi Zhang ◽  
Zenghui Su ◽  
Hongming Long ◽  
...  

2013 ◽  
Vol 448-453 ◽  
pp. 885-889
Author(s):  
Xiang Gou ◽  
Kai Zhang ◽  
Lian Sheng Liu ◽  
Wen Yong Liu ◽  
Zi Fang Wang ◽  
...  

The method of selective catalytic reduction (SCR) to removal NOx is very mature. However, its initial investment and operation cost are still high, which limits the development of SCR technology. Low temperature SCR catalysts can significantly reduce the cost. Catalyst active component and its carrier is the key to the efficiency of denitration. This paper summarizes the research progress of noble metal catalyst of low temperature SCR.


2013 ◽  
Vol 448-453 ◽  
pp. 881-884
Author(s):  
Xiang Gou ◽  
Kai Zhang ◽  
Lian Sheng Liu ◽  
Wen Yong Liu ◽  
Zi Fang Wang ◽  
...  

Low temperature SCR method has caused concern for the scholars in recent years. This SCR unit can be installed downstream of the desulfurization and particulate control devices, which is conducive to match the existing boiler system. It can relief the poisoning and blocking of SO2 and dust, so as to extend the life of catalyst. This paper summarizes the research progress of molecular sieve catalyst of low temperature SCR.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1632 ◽  
Author(s):  
Jie Zhang ◽  
Xiangcheng Li ◽  
Pingan Chen ◽  
Boquan Zhu

Selective catalytic reduction of NOx with NH3 is one of the most widely used technologies in denitration. Vanadium-based catalysts have been extensively studied for the deNOx process. V2O5/WO3(MoO3)TiO2 as a commercial catalyst has excellent catalytic activity in the medium temperature range. However, it has usually faced several problems in practical industrial applications, including narrow windows of operation temperatures, and the deactivation of catalysts. The modification of vanadium-based catalysts will be the focus in future research. In this paper, the chemical composition of vanadium-based catalysts, catalytic mechanism, the broadening of the temperature range, and the improvement of erosion resistance are reviewed. Furthermore, the effects of four major systems of copper, iron, cerium and manganese on the modification of vanadium-based catalysts are introduced and analyzed. It is worth noting that the addition of modified elements as promoters has greatly improved the catalytic performance. They can enhance the surface acidity, which leads to the increasing adsorption capacity of NH3. Surface defects and oxygen vacancies have also been increased, resulting in more active sites. Finally, the future development of vanadium-based catalysts for denitration is prospected. It is indicated that the main purpose for the research of vanadium-based modification will help to obtain safe, environmentally friendly, efficient, and economical catalysts.


Sign in / Sign up

Export Citation Format

Share Document