Compensation Research of Engine Oil Pressure Sensor Based on MEMS

2013 ◽  
Vol 325-326 ◽  
pp. 765-768
Author(s):  
Sheng Bing Yang ◽  
Shuai Wang ◽  
Yan Xia Su ◽  
Feng Xu ◽  
Zhen Zhen Li

The engine lubrication system plays an important role in the engine working process. Engine electronic oil pressure sensor based on piezoresistor pressure sensor MEMS with contactless measure technology is designed in this paper. This sensor includes a signal disposal chip which provides zero point pressure compensation, temperature compensation and sensitivity compensation and a chip which is used to adjust the duty cycle according to the output voltage of the signal disposal chip. The experiments show that the Engine electronic oil pressure sensor works well with excellent characteristic.

2013 ◽  
Vol 313-314 ◽  
pp. 666-670 ◽  
Author(s):  
K.J. Suja ◽  
Bhanu Pratap Chaudhary ◽  
Rama Komaragiri

MEMS (Micro Electro Mechanical System) are usually defined as highly miniaturized devices combining both electrical and mechanical components that are fabricated using integrated circuit batch processing techniques. Pressure sensors are usually manufactured using square or circular diaphragms of constant thickness in the order of few microns. In this work, a comparison between circular diaphragm and square diaphragm indicates that square diaphragm has better perspectives. A new method for designing diaphragm of the Piezoresistive pressure sensor for linearity over a wide pressure range (approximately double) is designed, simulated and compared with existing single diaphragm design with respect to diaphragm deflection and sensor output voltage.


2020 ◽  
pp. 10-16
Author(s):  
S.A. Belov ◽  
I.V. Busin

The article reviews four existing technologies for replacing engine oil and a method for determining its suitability for improving economic efficiency. It is established that the oil is replaced according to the need in accordance with the defect indicators. This technology of oil condition is characterized by a more complete use of its resource. The frequency of replacement is determined by the indicators of condition, which is monitored by special sensors built into the engine lubrication system. However, the difficulty of using this technology is due to the lack of high-quality devices for monitoring the state of running engine oil in the engine.


2006 ◽  
Author(s):  
Taeyoung Han ◽  
Suchee Wang ◽  
Mark K. Krage
Keyword(s):  

2006 ◽  
Vol 505-507 ◽  
pp. 1057-1062 ◽  
Author(s):  
Ho Chang ◽  
Mu Jung Kao ◽  
Tsing Tshih Tsung ◽  
J.L. Wu

This study developed a square-like pressure wave generator as an excitation source to test dynamic characteristics of pressure sensors. The developed generator can generate a square-like pressure wave of as high as 2 kHz and can achieve high-frequency switching by utilizing the differential principle through a series of mechanical rotations between the revolving spindle and revolving ring. The square-like pressure wave generated is input into the hydraulic system while the output voltage signals given by the pressure sensor can be analyzed by spectrum analysis to obtain dynamic characteristics of the pressure sensor


Author(s):  
Chih-Tang Peng ◽  
Ji-Cheng Lin ◽  
Chun-Te Lin ◽  
Kuo-Ning Chiang

In this study, a packaged silicon base piezoresistive pressure sensor with thermal stress buffer is designed, fabricated, and measured. A finite element method (FEM) is adopted for design and experimental validation of the sensor performance. Thermal and pressure loading on the sensor is applied to make a comparison between sensor experimental and simulation results. Furthermore, a method that transfers simulation stress data into output voltage is proposed in this study, the results indicate that the experimental result coincides with simulation data.


Sign in / Sign up

Export Citation Format

Share Document