Numerical Analysis of the Performance of Dual-Tank with Movable Baffle for Heat Pump Water Heater

2013 ◽  
Vol 331 ◽  
pp. 88-93
Author(s):  
Li Zhong Yang ◽  
Jie Wu ◽  
Ya Cai Hu ◽  
Rong Hua Hong

The design of a new type of water tank for heat pump water heater is proposed. A movable baffle is set in the cylindrical water tank to prevent the mixture of hot and cold water in order to enable more hot water available for utilizing. The COP of the heat pump cycle increased due to the decrease of initial heating temperature, thus energy is saved. By numerical calculation, the performance of the new design is significantly better than previous water tanks. Comparing with the floating plate tank and common natural stratification tank, in the condition of water leaking 3% and Chrome-nickel steel wall, the available hot water efficiency of dual-tank with movable baffle is 40% and 50% higher and the energy consumption 12.3% and 13.9% lower. Moreover, little water leaking could increase the available hot water.

2012 ◽  
Vol 482-484 ◽  
pp. 758-762
Author(s):  
Xing Wang Zhu ◽  
Chun Xia Hu ◽  
Yan Li Lv ◽  
Chao Xin Wang ◽  
Yu Gui Su

In this paper the system of air-source heat pump water heater(ASHPWH) using R134A to get 75°C hot water is proposed. The experiments on the performance of ASHPWH are conducted in two typical conditions, one for 7°C dry bulb temperature and 6°C wet bulb temperature, the other for 20°C dry bulb temperature and 15°C wet bulb temperature. In addition the variations of the suction temperature, the exhaust temperature, the suction pressure, the exhaust pressure, the transient heat capacity, the input power and COPs with the changing of the hot water tank temperature are analyzed. The results show that 75°C hot water can be produced steadily and the COPs are 2.84 and 3.68 respectively in two different conditions, therefore the ASHPWH has good energy saving effect.


2016 ◽  
Author(s):  
Gabriel Agila ◽  
Guillermo Soriano

This research develops a detailed model for a Water to Water Heat Pump Water Heater (HPWH), operating for heating and cooling simultaneously, using two water storage tanks as thermal deposits. The primary function of the system is to produce useful heat for domestic hot water services according to the thermal requirements for an average household (two adults and one child) in the city of Quito, Ecuador. The purpose of the project is to analyze the technical and economic feasibility of implementing thermal storage and heat pump technology to provide efficient thermal services and reduce energy consumption; as well as environmental impacts associated with conventional systems for residential water heating. An energy simulation using TRNSYS 17 is carried to evaluate model operation for one year. The purpose of the simulation is to assess and quantifies the performance, energy consumption and potential savings of integrating heat pump systems with thermal energy storage technology, as well as determines the main parameter affecting the efficiency of the system. Finally, a comparative analysis based on annual energy consumption for different ways to produce hot water is conducted. Five alternatives were examined: (1) electric storage water heater; (2) gas fired water heater; (3) solar water heater; (4) air source heat pump water heater; and (5) a heat pump water heater integrated with thermal storage.


Author(s):  
Jielin Luo ◽  
Qin Wang ◽  
Zhen Zhao ◽  
Kaiyin Yang ◽  
Guangming Chen ◽  
...  

Abstract Considering the issues of environmental pollution and energy efficiency, heat pumps are gradually replacing traditional coal combustion for heating at low ambient temperatures. In this paper, eco-friendly CO2/HCs with large temperature glides are applied in a single-stage recuperative heat pump water heater. Its heating performance is theoretically investigated under the working condition of producing circulating hot water in typical winter of northern China, with medium temperature difference between supply/return water and large temperature difference between air inlet and water inlet. Due to its simple structure, low initial investment and high efficiency, its potential for producing circulating hot water is demonstrated. Exergy analyses are conducted to reveal the significant influence of the exergy losses of heat exchanger on system performance. For specified CO2/HC, optimal COP is obtained through global optimization of cycle pressures and mixture concentration. The heating performances of different CO2/HCs are compared, among which CO2/R600 and CO2/R600a behave better. Meanwhile, a typical vapor-injection cycle is used to demonstrate priorities on the heating performance of this recuperative cycle, in which the COP of recuperative cycle using CO2/R600 is more than 3.4% higher than that of the vapor-injection cycle. The results obtained in this paper provide a simple and efficient solution for producing circulating hot water at low ambient temperatures.


Author(s):  
B. J. Huang ◽  
F. H. Lin

A compact and fast temperature-response heat pump water heater was designed using multiple tanks and a sequential control device. The supply tank was heated as a priority by a freon-line switching device to increase the temperature recovery speed. A dual-tank prototype with 100-liter capacity was built and tested. The experimental results show that the time for temperature recovery of the supply tank from 42°C to 54°C reaches 10–20 minutes and COP reaches 2.0–3.0 during various seasons. The prototype tests show that an energy saving around 50%–70% as compared to the electrical water heater can be obtained. The hot water discharge efficiency of the heat pump is 0.912.


Author(s):  
Yahya I. Sharaf-Eldeen ◽  
Craig V. Muccio ◽  
Eric Gay

This work involves measurements, analyses, and evaluations of the performance of add-on, Heat Pump Water Heater (HPWH) systems in residential and small commercial applications. Two air-source Heat Pump (HP) systems rated at 7,000- and 12,000-BTU (2.051- and 3.517-kWh), were utilized in this work. The two HPs were retrofitted to two 50-gallon (189.3 liters) electric-resistance storage water-heaters with their electric heating elements removed. A third, standard electric water-heater (EWH), was used for comparison. The testing set-up was fully instrumented for measurements of pertinent parameters, including inlet and outlet water temperatures, inlet and outlet air temperatures of the HPs, temperature and humidity of the air in the surrounding space, volume of water draws out of the storage heater tanks, as well as electric energy consumptions of the systems. Several performance measures were used in this work, including the Coefficient of Performance (COP), which is a measure of the instantaneous energy output in comparison with the energy input; Energy Factor (EF), which is an average measure of the COP taken over extended periods of time; and the First Hour Rating (FHR), which is a measure of the maximum volume of hot water that a storage type water-heater can supply to a residence within an hour. The results obtained clearly indicate that, HPWH systems are much more efficient as compared to standard EWHs. While the average value of the EF for a standard EWH is close to 1.0, the HPWH systems yield EFs averaging more than 2.00, resulting in annual energy savings averaging more than 50%. The results also showed that, HPWH systems are effective at reducing utility peak demand-loads, in addition to providing substantial cost savings to consumers.


2013 ◽  
Vol 827 ◽  
pp. 99-104
Author(s):  
Bin Li ◽  
Xi Chen ◽  
Xin Hao Li ◽  
Lu Kuan Ma ◽  
Wen Bo Lu ◽  
...  

Now in general use in solar water heater, there is a long pipeline between water heater and tap, we have to empty the stored cold water before we use the hot water; and usually the water cannot meet required temperature due to the heating delay effect, thus the water also should be emptied, which leads to a waste of water resources. In order to solve this water wastage, we propose a device which can help to control the temperature and backflow of the water in water heater. The device accomplishes backflow of cold water automatically under the effect of gravity, and refluxed water will be stored in the recycle-water tank, thus ensuring the result that the water temperature satisfies the requirement. After the recycle-water tank is full, it will trigger the buoy to control the relay switch, then the water pump start to work to force the water into the water heater tank. Thus, realizing the recycling of water. This device can significantly save water resources in domestic water, and it has a broad market prospect.


2021 ◽  
Author(s):  
Afarin Amirirad

Considering the large energy consumption of conventional water heaters in residential buildings, the performance of a new type of water heater has been characterized through conducting experiments and numerical modelling. The specific water heater investigated in this work benefits from heat absorption from the indoor air, denoted as the air source heat pump water heater (ASHPWH), and is located in the Archetype Sustainable Twin House B in Toronto. The experiments have been conducted under three different indoor conditions associated with temperature and humidity. The coefficient of performance (COP), which quantifies the ratio of heating capacity to the consumed power of ASHPWH, ranges between 1.5 and 5, depending on the indoor dry bulb and water inlet temperatures. A TRNSYS model of ASHPWH has been constructed based on the obtained experimental results and has subsequently been integrated with a TRNSYS model of the Archetype Sustainable House (ASH). The numerical results were verified with the experimental data. The model results suggests that after employing ASHPWH, the domestic hot water energy consumption reduces by 60.3% and 53.2% compared to the electric water heater in summer and winter respectively. Due to the energy absorption of ASHPWH from the indoor environment, the heating load of the ASH house increases while its cooling load decreases. Furthermore, the annual electricity consumption of the ASH house due to the required heating and cooling as well as the domestic hot water demand is reduced by 21.3%. Finally, as a consequence of employing ASHPWH, the energy cost and GHG emission were reduced respectively by 22% and 21.7%. By investigating the system in four other Canadian cities, it appears that Vancouver and Edmonton would have the maximum and minimum energy savings respectively.


2021 ◽  
Author(s):  
Afarin Amirirad

Considering the large energy consumption of conventional water heaters in residential buildings, the performance of a new type of water heater has been characterized through conducting experiments and numerical modelling. The specific water heater investigated in this work benefits from heat absorption from the indoor air, denoted as the air source heat pump water heater (ASHPWH), and is located in the Archetype Sustainable Twin House B in Toronto. The experiments have been conducted under three different indoor conditions associated with temperature and humidity. The coefficient of performance (COP), which quantifies the ratio of heating capacity to the consumed power of ASHPWH, ranges between 1.5 and 5, depending on the indoor dry bulb and water inlet temperatures. A TRNSYS model of ASHPWH has been constructed based on the obtained experimental results and has subsequently been integrated with a TRNSYS model of the Archetype Sustainable House (ASH). The numerical results were verified with the experimental data. The model results suggests that after employing ASHPWH, the domestic hot water energy consumption reduces by 60.3% and 53.2% compared to the electric water heater in summer and winter respectively. Due to the energy absorption of ASHPWH from the indoor environment, the heating load of the ASH house increases while its cooling load decreases. Furthermore, the annual electricity consumption of the ASH house due to the required heating and cooling as well as the domestic hot water demand is reduced by 21.3%. Finally, as a consequence of employing ASHPWH, the energy cost and GHG emission were reduced respectively by 22% and 21.7%. By investigating the system in four other Canadian cities, it appears that Vancouver and Edmonton would have the maximum and minimum energy savings respectively.


Author(s):  
H. I. Abu-Mulaweh

Heat pump water heater was designed and a prototype was developed and constructed. The performance of the heat pump water heater prototype is described by presenting some experimental test data. The experimental measurements include temperature, flow rates, and power consumption. The testing procedure consisted of evaluating the recovery rate and the coefficient of performance (COP) of the system. The results strongly indicate that heat pump water heater system design is very practical and it provides the consumer with a more efficient hot water heater alternative.


Sign in / Sign up

Export Citation Format

Share Document