Integrated Sensor System for Rock Mass Underground Deformation Measurement and Data Analysis

2013 ◽  
Vol 336-338 ◽  
pp. 295-302 ◽  
Author(s):  
Yang Ming Xie ◽  
Qing Li ◽  
Guo Qing Jiang

In order to thoroughly reflect the underground deformation of rock mass, in this article, a sensor system which study on the landslide is invented and the reliable fitting formula based on the experimental data is produced. In first part, we briefly introduce the fundamental principles and measuringways of the instrument, then describe the whole effective monitoring process, and in the data processing, finally obtain the efficacious fitting formula by analyzing basic steps of Levenberg-Marquardt algorithm and utilizing this algorithm to fit experimental data. The experiment demonstrates that the real-time underground displacement measurement is practical and can be applied to analyze early deformation of rock mass and warn the unstable situation.

Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 11
Author(s):  
Yaoxin Zheng ◽  
Shiyan Li ◽  
Kang Xing ◽  
Xiaojuan Zhang

Unmanned aerial vehicles (UAVs) have become a research hotspot in the field of magnetic exploration because of their unique advantages, e.g., low cost, high safety, and easy to operate. However, the lack of effective data processing and interpretation method limits their further deployment. In view of this situation, a complete workflow of UAV magnetic data processing and interpretation is proposed in this paper, which can be divided into two steps: (1) the improved variational mode decomposition (VMD) is applied to the original data to improve its signal-to-noise ratio as much as possible, and the decomposition modes number K is determined adaptively according to the mode characteristics; (2) the parameters of target position and magnetic moment are obtained by Euler deconvolution first, and then used as the prior information of the Levenberg–Marquardt (LM) algorithm to further improve its accuracy. Experiments are carried out to verify the effectiveness of the proposed method. Results show that the proposed method can significantly improve the quality of the original data; by combining the Euler deconvolution and LM algorithm, the horizontal positioning error can be reduced from 15.31 cm to 4.05 cm, and the depth estimation error can be reduced from 16.2 cm to 5.4 cm. Moreover, the proposed method can be used not only for the detection and location of near-surface targets, but also for the follow-up work, such as the clearance of targets (e.g., the unexploded ordnance).


2018 ◽  
Vol 15 (7) ◽  
pp. 692-699 ◽  
Author(s):  
Geraldo de Araújo Moura ◽  
Saulo de Tarso Marques Bezerra ◽  
Heber Pimentel Gomes ◽  
Simplício Arnaud da Silva

2018 ◽  
Vol 62 ◽  
pp. 02002
Author(s):  
Yuryi Polozov ◽  
Nadezhda Fetisova

Algorithms for ionospheric data processing are presented in the paper. The algorithms are implemented in the real-time mode of ionospheric parameter analysis. They are a component of “Aurora” software system for geophysical data analysis. The algorithms allow us to estimate the state of the ionosphere in the region of Kamchatka Peninsula and to detect ionospheric anomalies. Assessment of the algorithms efficiency has shown that it is possible to use them to detect ionospheric anomalies that may occur on the eve of magnetic storms. The research is supported by the Russian Science Foundation Grant (Project No. 14-11-00194).


2021 ◽  
Author(s):  
Carolina Nunes ◽  
Jasper Anckaert ◽  
Fanny De Vloed ◽  
Jolien De Wyn ◽  
Kaat Durinck ◽  
...  

Biomedical researchers are moving towards high-throughput screening, as this allows for automatization, better reproducibility and more and faster results. High-throughput screening experiments encompass drug, drug combination, genetic perturbagen or a combination of genetic and chemical perturbagen screens. These experiments are conducted in real-time assays over time or in an endpoint assay. The data analysis consists of data cleaning and structuring, as well as further data processing and visualisation, which, due to the amount of data, can easily become laborious, time consuming, and error-prone. Therefore, several tools have been developed to aid researchers in this data analysis, but they focus on specific experimental set-ups and are unable to process data of several time points and genetic-chemical perturbagen screens together. To meet these needs, we developed HTSplotter, available as web tool and Python module, that performs automatic data analysis and visualisation of either endpoint or real-time assays from different high-throughput screening experiments: drug, drug combination, genetic perturbagen and genetic-chemical perturbagen screens. HTSplotter implements an algorithm based on conditional statements in order to identify experiment type and controls. After appropriate data normalization, HTSplotter executes downstream analyses such as dose-response relationship and drug synergism by the Bliss independence method. All results are exported as a text file and plots are saved in a PDF file. The main advantage of HTSplotter over other available tools is the automatic analysis of genetic-chemical perturbagen screens and real-time assays where results are plotted over time. In conclusion, HTSplotter allows for the automatic end-to-end data processing, analysis and visualisation of various high-throughput in vitro cell culture screens, offering major improvements in terms of versatility, convenience and time over existing tools.


2018 ◽  
Vol 14 (05) ◽  
pp. 19
Author(s):  
Haohao Yuan

The system designed is a ship collision avoidance system based on consistent use of satellite positioning technology, spread spectrum communication technology and a wireless sensor network. The system design includes: an information collecting terminal, a data processing terminal and a mobile data terminal as the three main parts. CC2530 is selected as the master chip for the information collecting terminal, and the GPS module with NEO-6M UBLOX satellite positioning function is used to obtain the latitude, longitude, heading and other information. The AS62-T30 wireless communication module is used to realize the data interaction between ships, and a 0.96-inch OLED display module is used to show the current location of the ship, thus realizing the GPS positioning data receiving, data analysis, information display, data integration and transmission, and other functions. In terms of the software in the data processing terminal, QT5 is selected as the development environment, and QtSql as the database to process and store the data packet sent by the information collecting terminal. The system has many functions including real-time data analysis and alarm, real-time location annotation, track query, route planning and weather forecasting, etc.


Sign in / Sign up

Export Citation Format

Share Document