Transient Performance Simulation of Single-Cylinder Engines Based on Tribology Behaviors

2010 ◽  
Vol 34-35 ◽  
pp. 946-950
Author(s):  
Jian Zhao ◽  
Bin Tang ◽  
Yun Bang Tang ◽  
Kun Peng Qi ◽  
Er Lin Ma

The transient performance of engines is investigated in this paper. A mathematical model of single-cylinder engines is established and the friction torques produced by crankshaft bearing, piston assembly, pumping loss and other major factors are modeled. A dynamic simulation system is developed based on the MATLAB Simulink environment. Friction torques and instantaneous motion characteristics of the engine are predicted. The results show that crankshaft bearing, piston assembly, and pumping loss have a major effect on the transient performance of the engine, and the models described in this paper provide an effective tool to simulate engine processes.

Robotica ◽  
2021 ◽  
pp. 1-19
Author(s):  
Guoxing Zhang ◽  
Donghao Zheng ◽  
Jinwei Guo ◽  
Yulei Hou ◽  
Daxing Zeng

SUMMARY A novel 3-R(RRR)R+R (R as revolute joint) hybrid antenna mechanism (HAM) is proposed for noncircular polarized antenna. First, its mobility characteristic is analyzed. Besides, its kinematics is deduced, and the velocity and acceleration are obtained. Afterward, its dynamic model is established. The actuation torques of each actuation joint are obtained. Its actuation torques are verified by mathematical model analysis and dynamic simulation. Furthermore, its workspace is also presented. Finally, the motion characteristics experimental results show that the 3-R(RRR)R+R HAM can carry out the azimuth and pitch motion. This research work serves as a fundamental theoretical basis for its further application.


2015 ◽  
Vol 713-715 ◽  
pp. 235-238
Author(s):  
Wen De Tian ◽  
Shan Jun Mu ◽  
Man Man Jin ◽  
Chun Li Wang ◽  
Chuan Kun Li

The dynamic mathematical model of FCCU reactor was established. Reaction kinetics uses five parameter lumped model, with components emulated by similar hydrocarbons. Simulation system was built to simulate normal conditions, and the effect of some abnormal conditions on charred tank’s exit oxygen content, charred tank’s temperature (not cooled), charred tank’s temperature (cooled) were studied. Because the abnormal condition is the combustion of regenerator’s dilute phase’s extremity, this paper used the amount of carbon monoxide’s combustion to simulate this abnormal condition.With the variation of the charred tank’s exported oxygen content or temperature reflects the degree of dilute phase’s combustion. The results show that the dynamic simulation of the system can accurately simulate the cracking reactor abnormal condition.


2009 ◽  
Vol 14 (1) ◽  
pp. 40-44
Author(s):  
Xiu-ping Su ◽  
Jiang-ping Chen ◽  
Zhi-jiu Chen ◽  
Xiao-tian Zhou

2012 ◽  
Vol 246-247 ◽  
pp. 1220-1225
Author(s):  
You Kun Zhong

With the increasing of the number of cars, people are also getting higher and higher demands on the performance of the car, and especially pay attention to the improvement and optimization of automobile transmission system. The transmission is a key part of automobile transmission system, and transmission performance and stability depend on the synchronous machine, so in order to make the vehicle transmission system with higher efficiency, it is necessary to study the synchronous machine. On the basis of elaborating synchronous machine working principle, the use of dynamics theory to establish mathematical model of synchronous machine system, and to carry out the simulation of synchronous machine three-dimensional model in PRO/E environment, then the use of virtual prototype technology to optimize the parameters of synchronous machine, thereby improving the performance of synchronous machine.


2010 ◽  
Vol 426-427 ◽  
pp. 299-302
Author(s):  
Fa Ye Zang

Based on deeply analyzing the working principles and energy-saving theory of loader secondary regulating transmission system, regenerating the transmission system’s inertial energy by controlling constant torque was put forward. Considering large changes of the parameters of the transmission system and its non-linearity, a fuzzy control was adopted to control the transmission system, and the mathematical model of the system was established, then the simulations of the performance of the transmission system has been conducted. The conclusion was made that the inertial energy can be reclaimed and reused in the system by the application of the secondary regulation technology, and braking by controlling constant torque is stable, it can ensure the security of braking at high speed and also permits changing the efficiency of recovery by changing the braking torque. The system’s power has been reduced and energy saving has been achieved.


2012 ◽  
Vol 220-223 ◽  
pp. 1559-1563
Author(s):  
Rui Wu ◽  
Li Bao ◽  
Yuan Kui Xu

The relative direction for a constant speed can be determined according to the planar non-circular curve parts. To establish the mathematical model, a constant speed motion simulation system is designed. The parameters of (vH=5mm/s, δ<3") is commonly used for the simulation system to simulate the movement of drawing the error curve. The results show that by controlling the movement of the plane curve parts in mathematical model can derive the basic constant speed, the relative error of constant speed is less than 3%, it provides a reliable bias when apply to production practice.


2013 ◽  
Vol 13 (9) ◽  
pp. 1406-1414
Author(s):  
Wang He ◽  
Liu Yong-Shun ◽  
Liu Xiao-Li ◽  
Duan Jin-Hui ◽  
Xue Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document