Study on Failure Mechanism of Reinforced Concrete Frame with Construction Joint

2013 ◽  
Vol 351-352 ◽  
pp. 434-437
Author(s):  
Xi Kang Yan ◽  
Kang Ma ◽  
Su Duan Wang ◽  
Qian Qian Chen ◽  
Xiao Lei Hou ◽  
...  

According to the quasi static test of reinforced concrete frame with construction joints in, the fracture crack sequence, fracture morphology and plastic hinge are studied in detail. Research shows that two kinds processing method of construction joint will not affect the destruction form of a frame structure, but destruction order .

2016 ◽  
Vol 20 (7) ◽  
pp. 1125-1138 ◽  
Author(s):  
Jing Yu ◽  
Xiaojun Liu ◽  
Xingwen Liang

A new model that can simulate the behavior of construction joint subjected to seismic forces was proposed. Nonlinear time-history analysis was carried out for reinforced concrete regular frame structures designed in different seismic intensity regions as well as with different height-to-width ratios. Two kinds of numerical models are adopted to simulate the seismic behavior of each frame, one with construction joint using the new proposed model and the other without construction joint using the conventional model. Results show that the influence of construction joint on the seismic behavior of reinforced concrete frame is strongly related to structural nonlinearity. It may increase the top displacement and the inter-story drift, change the inter-story drift distributions, and exacerbated the local reaction of key members. The influence of construction joint cannot be ignored for structures with low emergency capacity against major earthquake. Seismic design suggestions are proposed from the aspect of calculation analysis method.


Author(s):  
L. M. Megget

The paper describes the dynamic and static analyses and design of a four storey ductile reinforced concrete frame structure isolated from the foundations by elastomeric bearings incorporating lead energy dampers. Results from inelastic, time-history analyses for the isolated and non-isolated structure are compared for several input earthquake motions. The benefits of energy dampers in reducing the isolated building's response (shears, plastic hinge demands and interstorey drifts) are detailed. Differences from conventional ductile design and detailing as well as design recommendations are included.


2012 ◽  
Vol 166-169 ◽  
pp. 172-175
Author(s):  
Chun Ming Wei ◽  
De Long Shao ◽  
Hui Su ◽  
Qiang Zhao

To investigate the effect of the horizontal construction joint on seismic behavior of the exterior joint of the reinforced concrete frame structure, the numerical simulation of the exterior joint with the construction joint under the low cyclic loading was done. The experimental results and the numerical simulation values were compared. Seen from the ultimate load, the experiment value is 158.7kN, the simulation value is 170kN, the relative error is about 11%.Further analysis of the exterior joint of reinforced concrete frame skeleton properties, the feasibility of applying unit construction joints is verified.


2014 ◽  
Vol 556-562 ◽  
pp. 712-715
Author(s):  
Jing Zhao ◽  
Jing Zhao ◽  
Xing Wang Liu

In collapse-resistant design of a structure under accidental local action, it is important to understand the failure mechanism and alternative load paths. In this paper, a pseudo-static experimental method is proposed. Based on which, the collapse of frame structure was simulated with testing a 1/3 scale; 4-bay and 3-story plane reinforced concrete frame. In the experience, the middle column of the bottom floor was replaced by mechanical jacks to simulate its failure, and the simulated superstructure’s gravity load acted on the column of the top floor by adopting a servo-hydraulic actuator with force –controlled mode.


2011 ◽  
Vol 255-260 ◽  
pp. 2421-2425
Author(s):  
Qiu Wei Wang ◽  
Qing Xuan Shi ◽  
Liu Jiu Tang

The randomness and uncertainty of seismic demand and structural capacity are considered in demand-capacity factor method (DCFM) which could give confidence level of different performance objectives. Evaluation steps of investigating seismic performance of steel reinforced concrete structures with DCFM are put forward, and factors in calculation formula are modified based on stress characteristics of SRC structures. A regular steel reinforced concrete frame structure is analyzed and the reliability level satisfying four seismic fortification targets are calculated. The evaluation results of static and dynamic nonlinear analysis are compared which indicates that the SRC frame has better seismic performance and incremental dynamic analysis could reflect more dynamic characteristics of structures than pushover method.


Sign in / Sign up

Export Citation Format

Share Document