Experimental Analysis on Microstructure and Mineral Composition of Jurassic Soft Rock in Shajihai Mining Area of Xinjiang

2013 ◽  
Vol 353-356 ◽  
pp. 24-27
Author(s):  
Xiao Lei Wang ◽  
Shun Xi Yan ◽  
Hai Qiao Wen

In order to find out themicroscopic structure and determine mineral composition and relative content ofroadway soft rock in Shajihai mining area, this paper carried out experimentsof scanning electron microscope (SEM) analysis and X-ray diffraction analysis.SEM test results show that the microstructure of the surrounding rock isgenerally poor and joint, crack, pore are developed. The crack is easy toexpand under the effect of surrounding rock pressure and water, which makesrock mass more broken and greatly reduces the stability of surrounding rock.X-ray diffraction analysis test shows that the component content of clayminerals in the surrounding rock is high. Clay mineral in mudstone containsmontmorillonite and content of illite/smectite mixed layer is relativelyhigher, up to 45%. In conclusion, soft rock roadway of Shajihai mine areabelongs to the typical swelling-jointed compound soft rock. The targeted andreasonable compound transformation technology and coupling support measuresmust be adopted when supporting.

2013 ◽  
Vol 868 ◽  
pp. 251-254 ◽  
Author(s):  
Hui Yu ◽  
Ling Gen Kong ◽  
Zhi Yong Niu ◽  
Shi Ting Zhu ◽  
Dan Yang Jing

The roof of 12501 transportation roadway of Tunlan mine is friable. To solve the problem of large roadway deformation, the bolt-mesh-anchor support scheme is put forward. With the FLAC3D numerical software in the program, the simulation analysis shows that the program can effectively increase the roadway confining pressure to improve the state of the surrounding rock stress, reduce roadway displacement and deformation and thus keep the stability of the surrounding rock. The results show that Bolt and cable support can effectively control the surrounding rock, with the roadway convergence rate small, and the support system safe.


2013 ◽  
Vol 353-356 ◽  
pp. 20-23
Author(s):  
Xiao Lei Wang ◽  
Shun Xi Yan ◽  
Guang Can Zhang

According to the problemsof serious deformation of soft rock roadways and lack of system andcomprehensive study on surrounding rock characteristics and failure mechanismin Shajihai mining area, this paper carried out a series of mechanicalexperiments on the characteristics of surrounding rock in this area includinguniaxial compression test, triaxial compression test and water absorption propertiestest. Mechanical test results show that the compressive strength of surroundingrock of roadway is generally low, and mudstone compressive strength is thelargest which is 19.23 MPa, and compressive strength of the minimum is coalwhich is 11.32 MPa under natural condition. However sandstone and mudstone’sability of water absorbing is strong, and coal saturation strength issignificantly greater than that of mudstone and sandstone. Therefore, we shouldmake full use of the strength of coal in roadway layout and support design.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lujing Zheng ◽  
Yujun Zuo ◽  
Yafei Hu ◽  
Wei Wu

In this study, the analysis and control of stability of surrounding rock in deep fractured soft rock roadway located in the underground mine of Jinfeng gold mine in Guizhou Province, China, has been investigated. The surrounding rock of roadway has been analyzed to characterize its deformation and failure mechanism through field survey, testing of rock physical and mechanical properties, in situ stress measure, analysis of mineral components of rock, and investigation of rock fragmentation degree. Based on the numerical simulation technology, the influence of different factors on the stability of roadway is studied. The physical and mechanical properties of surrounding rock and the bearing capacity of surrounding rock layer are to be improved to maintain the stability of broken soft rock roadway as high ground stress, rock fragmentation, and poor lithology leading to tunnel instability. Hence, a high-strength “cable bolt + fiber-reinforced shotcrete + steel mesh + split sets + resin bolt + cement grouting” combined support system has been proposed to improve the effective bearing structure significantly with high integrity and bearing capacity.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yong Zhang ◽  
Chengwei Zhao ◽  
Ming Jiang ◽  
Jiaxuan Zhang ◽  
Chen Chen ◽  
...  

The stability control of a soft rock roadway is a crucial problem for sustainable utilization of limited coal resources in deep mining practices. To solve it, the soft rock types and failure mechanism of −890 entrance surrounding rock have been analyzed, taking Daqiang Coal Mine of China as an engineering example. The analysis shows that the damage to the surrounding rock was characterized by asymmetry, large deformation, severe damage, and extended durations. The surrounding rock can be divided into high-stress-jointed-strong expansion soft rock based on S-M scanning and mineral analysis. Numerical simulation is used to reproduce the failure process of the original supporting system and analyze the deformation of the surrounding rock, range of plastic zone, and distribution of the stress field. The failure mechanism is thus defined for a deep soft rock roadway. Combined with the above studies, the deformation mechanics of the surrounding rock is summarized as type IABIIABIIIABC. The stability transformation mechanism of the surrounding rock is proposed, based on which the control principle of deformation stability of a surrounding rock is formed. According to the control principle, “high strength support controls the surrounding rock deformation. The large deformation of the flexible support system releases the accumulated energy to the surrounding rock, and long-term deformation of the surrounding rock is controlled by high strength truss support.” Meanwhile, the constant-resistance, rigid, and flexible coupling (CRRFC) support system is proposed. The numerical analysis demonstrated that the CRRFC support system can effectively reinforce the shallow surrounding rock and improve the bearing capacity. Simultaneously, the development of the surrounding rock malignant plastic zone is effectively controlled. The application results show that the large deformation of the roadway can be effectively controlled by the CRRFC support system, which provides applications for similar engineering.


2013 ◽  
Vol 353-356 ◽  
pp. 1559-1565 ◽  
Author(s):  
Jun Wang ◽  
Guang Long Qu ◽  
Zheng Ze Wang ◽  
De Ke Sun

Inner Mongolia's xilingol league area of chagannaoers main inclined shaft is extremely soft rock roadway with the properties of 0.12 ~ 5.12MPa in uniaxial compressive strength of rock, 60.6% in clay mineral content and 82% of clay mineral composition is montmorillonite, and with the feature of argillation and expansion by absorbing water in surrounding rock. The two previous supporting schemes for this roadway were double16a I-beam and 650mm concrete layer as the first scheme, and close U36 steel stents as the repairing scheme, respectively. Both of them were failed to control deformation failure of surrounding rock. In this paper, a new supporting scheme was proposed by testing mechanics parameters and mineral composition of surrounding rock, analyzing hydraulic properties of surrounding rock and deformation failure, and evaluating surrounding rock load. This new scheme consists of high strength pressure-bearing ring supporting technology based on concrete filled steel tubular support and surrounding rock partial pressure-releasing technology. Aiming at deformation of side walls of the main inclined shaft roadway, a test was carried out to study the bending resistance of the support and improve the support. The industrial test showed that the new supporting scheme can effectively control the deformation of the main inclined shaft surrounding rock and realize long-term stability of roadway.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4357
Author(s):  
Qingxian Huang ◽  
Xufeng Wang ◽  
Xuyang Chen ◽  
Dongdong Qin ◽  
Zechao Chang

Pingdingshan mining area is one of the typical deep mining areas in China, and most of the mines in this area are troubled by the difficulties of the deep-soft-rock roadway support. Based on the concept of synergistic interactions of the interior and exterior bearing structure of the surrounding rock and, considering the specific geological conditions of the research site, we establish the mechanical model of the interior and exterior bearing structure of the roadway. Based on numerical simulation, we reveal the influence of main factors, such as support strength and mechanical characteristics, of surrounding rock on the distribution and evolution of the interior and exterior bearing structure. We found that increasing the support strength and mechanical parameters of surrounding rock can make the exterior bearing structure close to the roadway enhance the bearing characteristics of the interior and exterior bearing structure and improve the roadway stability. The distribution characteristics of the interior and exterior bearing structure of the roadway under six different support strengths and six different grouting parameters were systematically investigated by field measurements. According to the field test results, an effective strategy for controlling the deep-soft-rock roadway is proposed, which provides a good reference for surrounding rock control of the deep-soft-rock roadway in the Pingdingshan mining area and mines with similar mining conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hong-di Jing ◽  
Yuan-hui Li ◽  
Kun-meng Li

In order to study the deformation mechanism of soft rock roadway in underground mines, it is necessary not only to study the influence of the dynamic disturbance caused by the cyclic mining blasting vibration on the stability of the soft rock roadway but also to study the degradation of the roadway surrounding rock itself and other factors. The paper presented a synthetic research system to investigate the factors that influence roadway rock structure deterioration in Baoguo Iron Mine. Firstly, the stability of rock mass was analyzed from the perspective of the physical and structural characteristics of the rock mass. Afterwards, according to monitoring data of mining blasting vibration, a suitable safety blasting prediction model for Baoguo Iron Mine was determined. And then, combining the results of mining blasting vibration monitoring and deformation monitoring, the effect of cyclic mining blasting on the stability of the soft rock roadway was obtained. By systematically studying the intrinsic factors of rock quality degradation and external environmental disturbances and their interactions, this paper comprehensively explores the deformation mechanism of soft rock roadway and provides the support for fundamentally solving the large deformation problems of soft rock roadway in underground mines.


2012 ◽  
Vol 524-527 ◽  
pp. 598-603
Author(s):  
Nian Jie Ma ◽  
Zhi Qiang Zhao ◽  
Hua Zhao ◽  
Li Shuai Jiang

In order to solve the serious damage and repeat revision problem of high stress soft rock roadway in deep -950 level of Tangshan coal mine, based on the theory of the maximum stress level, together with the actual measurement of geostress and the laboratory mechanical parameters of rock-core and computer numerical simulation, the high strength combined support technology and supporting parameters are determined and the engineering test has been done. The engineering test results show that the parameter determination of high strength combined support technology, which based on the actual measurement of geostress, can effective solve the support issue of high stress soft rock roadway and provide useful experience for similar engineering problems.


Sign in / Sign up

Export Citation Format

Share Document