Experimental Study on Mechanical Properties of Jurassic Soft Rock in Shajihai Mining Area of Xinjiang

2013 ◽  
Vol 353-356 ◽  
pp. 20-23
Author(s):  
Xiao Lei Wang ◽  
Shun Xi Yan ◽  
Guang Can Zhang

According to the problemsof serious deformation of soft rock roadways and lack of system andcomprehensive study on surrounding rock characteristics and failure mechanismin Shajihai mining area, this paper carried out a series of mechanicalexperiments on the characteristics of surrounding rock in this area includinguniaxial compression test, triaxial compression test and water absorption propertiestest. Mechanical test results show that the compressive strength of surroundingrock of roadway is generally low, and mudstone compressive strength is thelargest which is 19.23 MPa, and compressive strength of the minimum is coalwhich is 11.32 MPa under natural condition. However sandstone and mudstone’sability of water absorbing is strong, and coal saturation strength issignificantly greater than that of mudstone and sandstone. Therefore, we shouldmake full use of the strength of coal in roadway layout and support design.

2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2013 ◽  
Vol 353-356 ◽  
pp. 24-27
Author(s):  
Xiao Lei Wang ◽  
Shun Xi Yan ◽  
Hai Qiao Wen

In order to find out themicroscopic structure and determine mineral composition and relative content ofroadway soft rock in Shajihai mining area, this paper carried out experimentsof scanning electron microscope (SEM) analysis and X-ray diffraction analysis.SEM test results show that the microstructure of the surrounding rock isgenerally poor and joint, crack, pore are developed. The crack is easy toexpand under the effect of surrounding rock pressure and water, which makesrock mass more broken and greatly reduces the stability of surrounding rock.X-ray diffraction analysis test shows that the component content of clayminerals in the surrounding rock is high. Clay mineral in mudstone containsmontmorillonite and content of illite/smectite mixed layer is relativelyhigher, up to 45%. In conclusion, soft rock roadway of Shajihai mine areabelongs to the typical swelling-jointed compound soft rock. The targeted andreasonable compound transformation technology and coupling support measuresmust be adopted when supporting.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wenxin Li ◽  
Jinxiao Liu ◽  
Lianjun Chen ◽  
Zhilu Zhong ◽  
Yongle Liu

This paper analyzes the large deformation of roadway in three-soft coal seam under the influence of tectonic stress. Taking the auxiliary conveying uphill roadway in Yili No. 1 Coal Mine as the engineering background, the deformation and failure mechanism of the surrounding rock and the supporting technology were studied. First, the characteristics of stress field and the surrounding rock properties of deep mining area were investigated through geostress measurement and rock mechanical test. Then, the roadway deformation and the loose circle of the supporting structure were obtained. Based on the results from measurement and theoretical analysis, we proposed a concept, i.e., “Stress adjustment-Strengthening-Grouting-Secondary support.” A numerical model was established to analyze the stress distribution and the state of plasticity in the surrounding rock. According to the results of the geostress measurement and the numerical simulation, a combined support scheme was proposed, i.e., “Yielding bolt & Shotcreting” as the primary support and “Prestressed grouting anchor cable & U-shaped shed” as the secondary support. Finally, the underground practice showed that the proposed support scheme can effectively control the large deformation and maintain the long-term stability of the roadway in deep and three-soft coal seam. The proposed technology has guiding significance for the support design under similar mining conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


2013 ◽  
Vol 651 ◽  
pp. 245-250
Author(s):  
Tasi Lung Weng ◽  
Wei Ting Lin

The effect of penetrating sealer on the structure of surface pore, mechanical properties, and durability of cement-based composites was studied. Concrete specimens with various water/cement ratios (w/c=0.35, 0.45, 0.55) were cast and treated surfaced with various amounts of penetrating sealer at different ages. The effect of penetrating sealer on the mechanical properties of concrete was assessed by compressive strength. And, the rapid chloride permeability was also explored to test concrete durability. Test results indicate that the application of penetrating sealer significantly improves concrete compressive strength and chloride resistance. By using scanning electron microscopes observation, the penetrating depth of penetrating sealer can be determined and is about 2 cm. The penetrating sealer in this study may be categorized as deep penetrating sealer.


2018 ◽  
Vol 67 ◽  
pp. 03022
Author(s):  
Sotya Astutiningsih ◽  
Dicky Tambun ◽  
Ahmad Zakiyuddin

Various aluminosilicate material have been used as precursor for geopolymer. Geopolymer gets its strength from the polycondensation of silicate and alumina. Metakaolin, calcinated kaolin, is pozzolan with the highest alumina and silicate purity. Indonesia, especially Bangka Island, has a large amount of kaolin deposit that being sold at low price. This price could be increased ten times when being sold as metakaolin. This study aimed to compare mechanical and metallurgical properties of commercial metakaolin and Bangka kaolin which calcinated at 700°C. Both metakaolins reacted with NaOH and waterglass as the activator followed by curing at room temperature for 7, 14 and 28 days and elevated temperature of 60°C for 4, 12 and 24 hours. Mechanical properties will be examined by compressive strength and flexural strength test, while the metallurgical properties will be evaluated with SEM, and TAM. The results of the mechanical test will be used to determine which geopolymer will perform well with the microstructure and thermal activity to support the finding. These attempts will be done in order to improve the properties of Bangka metakaolin geopolymer superior to commercial metakaolin.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


2016 ◽  
Vol 858 ◽  
pp. 91-97
Author(s):  
Jun Hua Xiao ◽  
Wen Qi Zheng

To investigate the macroscopic mechanical properties of undisturbed structural Xiashu loess in the lower reaches of China’s Yangtze River under triaxial compression, and obtain the intrinsic explanations for the macroscopic mechanical properties from the microscopic point of view, in laboratory, triaxial compression tests were carried out, microstructure images of sheared samples were collected by scanning electron microscope (SEM), and quantitative parameters of microstructure (mainly about particle or pore size, distribution, and alignment) were extracted by digital image processing technique. Based on the test results, the deviator stress-strain relationships of both undisturbed and remoulded Xiashu loess, the structural strength, and the microstructural evolution mechanism about the formation of shear failure zone of Xiashu loess under triaxial compression were analyzed.


Sign in / Sign up

Export Citation Format

Share Document