Soil Resistivity Measurements to Predict Moisture Content and Density in Loose and Dense Soil

2013 ◽  
Vol 353-356 ◽  
pp. 911-917 ◽  
Author(s):  
Mohd Hazreek Zainal Abidin ◽  
Fauziah Ahmad ◽  
Devapriya Chitral Wijeyesekera ◽  
Rosli Saad ◽  
Mohamad Faizal Tajul Baharuddin

In the past, most of the soil electrical resistivity charts were developed based on stand-alone geomaterial classification with minimal contribution to its relationship to some of geotechnical parameters. Furthermore, the values cited a very wide range of resistivity with sometimes overlapping values and having little significance to specific soil condition. As a result, it created some ambiguities during the interpretation of observations which were traditionally based on qualitative anomaly judgments of experts and experienced people. Hence, this study presents soil resistivity values based on laboratory experiment with a view to predict the soil moisture content and density in loose and dense soils. This study used a soil box and a resistivity meter to test a clayey silt soil, increasing its water usage from 1-3% based on 1500 gram of dry soil. All the moisture contents and density data were observed concurrently with 25 electrical soil resistance observations being made on the soil. All testing and formula used were in accordance with that specified in BS1377 (1990). It was apparent that the soil resistivity value was different under loose (L) and compact (C) condition with moisture content (w) and density (ρbulk) correlations being established as follows; ρbulk(C) = 2.5991ρ-0.037, ρbulk (L) = -0.111 ln (ρ) + 1.7605, w(L) = 109.98ρ-0.268, and w(C) = 121.88ρ-0.363 with determination coefficients, R2 that ranged between 0.69 0.89. This research therefore contributes a means of predicting these geotechnical parameters by related persons such as geophysicist, engineers and geologist who use these resistivity techniques in ground exploration.

Author(s):  
Swathi Gorthi ◽  
Huifang Dou

This paper provides a survey on different kinds of prediction models developed for the estimation of soil moisture content of an area, using empirical information including meteorological and remotely sensed data. The different models employed extend over a wide range of machine learning techniques starting from Basic Linear Regression models through models based on Bayesian framework, Decision tree learning and Recursive partitioning, to the modern non-linear statistical data modeling tools like Artificial Neural Networks. The fundamental mathematical backgrounds, pros and cons, prediction results and efficiencies of all the models are discussed.


Author(s):  
Sahar Safarianbana ◽  
Runar Unnthorsson ◽  
Christiaan Richter

Abstract Wood and paper residues are usually processed as wastes, but they can also be used to produce electrical and thermal energy through processes of thermochemical conversion of gasification. This study proposes a new steady state simulation model for down draft waste biomass gasification developed using the commercial software Aspen Plus for optimization of the gasifier performance. The model was validated by comparison with experimental data obtained from six different operation conditions. This model is used for analysis of gasification performance of wood chips and mixed paper wastes. The operating parameters of temperature and moisture content (MC) have been varied over wide range and their effect on the high heating value (HHV) of syngas and cold gas efficiency (CGE) were investigated. The results show that increasing the temperature improves the gasifier performance and it increases the production of CO and H2 which leads to higher LHV and CGE. However, an increase in moisture content reduces gasifier performance and results in low CGE.


2021 ◽  
Author(s):  
Jelena Mladenovic ◽  
◽  
Nebojsa Markovic ◽  
Ljiljana Boskovic-Rakocevic ◽  
Milena Đuric ◽  
...  

Sempervivum tectorum has a similar effect as aloe vera, which is known in the treatment of various skin diseases. This herb is considered one of the safest remedies for a wide range of skin diseases. Due to its anti-inflammatory and antiseptic properties, it also serves as an excellent first aid for burns, stings and bites, because it provides quick relief and calming. Freshly squeezed juice from the leaves of the houseplant is used in the treatment of nervous disorders, epilepsy and restless dreams. The leaves are edible and can be used as an addition to salads or stews. They are not particularly tasty, but as they are rich in water, they can be put in a juicer together with other fruits or vegetables and become a refreshing drink. It is used in folk herbal medicine and as a medicine. The aim of this study was to determine the moisture content, total extracted substances, extract density, vitamin C, organic acids and proteins in house extracts.


Weed Science ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 485-489 ◽  
Author(s):  
L. E. Bode ◽  
C. L. Day ◽  
M. R. Gebhardt ◽  
C. E. Goering

In the range of 4.4 to 49 C, there is an exponential relationship between temperature and trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) diffusion coefficients. Diffusion is low in air-dry soil for all temperatures. It increases to a maximum value when the soil has between 8 and 15% w/w soil moisture content and then decreases steadily as moisture content increases. When the air-filled fraction of soil void space is reduced below approximately 40% v/v by either compression or addition of moisture, diffusion begins to decrease. An equation was developed to predict trifluralin diffusion coefficients from a factorial experiment with seven soil moisture contents, five soil temperatures, and two bulk densities. Diffusion coefficients range from 3.8 X 10-11 cm2/sec to 2.8 X 10-6 cm2/sec. Fifteen terms are required in the prediction model to describe accurately the response surface of trifluralin diffusion coefficients. With the equation it is possible to predict trifluralin diffusion coefficients for any combination of measured soil parameters as long as they are represented by the range of the variables used in the experiment.


Geosciences ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 393
Author(s):  
Stefania Bilardi ◽  
Domenico Ielo ◽  
Nicola Moraci

Predictive models able to provide a reliable estimate of hydraulic conductivity can be useful in various geotechnical applications. Since most of the existing predictive methods for saturated hydraulic conductivity estimation are valid only for a limited range of soils or can be applied under certain restrictive conditions, a new method applicable to clayey soils and clayey or silty sands having a wide range of values of soil index properties is proposed in this study. For this purpose, 329 saturated hydraulic conductivity values, obtained by laboratory tests carried out on different soils, were collected in a database and used to develop five equations using a multiple regression approach. Each equation correlates the hydraulic conductivity with one or more geotechnical parameters. An equation was developed that predicts, within an order of magnitude, the saturated hydraulic conductivity in the range from 1.2 × 10−11 to 3.9 × 10−6 m/s, based on simple geotechnical parameters (i.e., clay content, void ratio, plastic limit, and silt content).


2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Changsoo Jang ◽  
Bongtae Han

Hygroscopic and thermal expansion behavior of advanced polymers is investigated when subjected to combined high temperature and moisture conditions. An enhanced experimental–numerical hybrid procedure is proposed to overcome the limitations of the existing methods when used at temperatures above the water boiling temperature. The proposed procedure is implemented to measure the hygrothermal strains of three epoxy molding compounds and a no-filler underfill over a wide range of temperatures including temperatures beyond the water boiling temperature. The effects of moisture content on the glass transition temperature (Tg) and coefficient of thermal expansion (CTE) are evaluated from the measurement data. A formulation to predict the Tg change as a function of moisture content is also presented.


Fire ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 34
Author(s):  
Anne-Claude Pepin ◽  
Mike Wotton

Parks Canada, in collaboration with Nova Scotia Lands and Forests and Natural Resources Canada, documented shrub fire behaviour in multiple plots burned over two periods: a spring period in June 2014 and a summer period in July 2017. The study area, located within Cape Breton Highlands National Park, comprised fifteen burn units (20 m by 20 m in size). Each unit was ignited by line ignition and burned under a wide range of conditions. Pre-burn fuel characteristics were measured across the site and used to estimate pre-fire fuel load and post-fire fuel consumption. This fuel complex was similar to many flammable shrub types around the world, results show that this shrub fuel type had high elevated fuel loads (3.17 ± 0.84 kg/m2) composed of exposed live and dead stunted black spruce as well as ericaceous shrubs, mainly Kalmia angustifolia (evergreen) and Rhodora canadensis (deciduous). Data show that the dead moisture content in this fuel complex is systematically lower than expected from the traditional relationship between FFMC and moisture content in the Canadian Fire Weather Index System but was statistically correlated with Equilibrium Moisture Content. A significant inverse relationship between bulk density and fire rate of spread was observed as well as a clear seasonal effect between the spring burns and the summer burns, which is likely attributable to the increase in bulk density in the summer. Unlike most shrub research, wind and dead moisture content did not have a statistically significant association with fire spread rates. However, we believe this to be due to noise in wind data and small dataset. Rate of spread as high as 14 m/min and flame lengths over 4 m were recorded under Initial Spread Index values of 6.4 and relative humidity of 54%. A comparison with a number of well-known shrubland spread rate prediction models was made. An aid to operational fire prediction behaviour is proposed, using a fuel type from the Canadian Fire Prediction System (O-1b) and a modified estimate of fuel moisture of the elevated fuel in the fuel complex.


2019 ◽  
Vol 1 (3) ◽  
pp. 343-356 ◽  
Author(s):  
Mohamed ◽  
Liu

Efficient transplanting has been identified as one of the essential steps towards achieving an increased yield in the farm. However, many factors are affecting these processes such as soil moisture content and the speed of pickup. This study was carried out to investigate the effect of different soil moisture content and pickup speeds on pickup force, balance, resistance, and lump damage during transplanting of seedlings. The results showed that penetration resistance was inversely proportional to the speed and soil moisture content. The highest penetration resistance (38 N) values were recorded under the lowest speed (0.5 mm/s) at the low moisture content; whereas, the lowest penetration resistance was obtained at highest speed (10 mm/s) under high moisture content. The highest pick-up force resistance values were recorded under the lowest speed (0.5 mm/s) at low moisture content than the lowest pick-up force resistance of 1.4 N at (10 mm/s) under the high moisture content. On the other hand, an increase of pick-up force led to a decrease in the pick-up force resistance. The pick-up damage and the pick-up speed are directly proportional—nevertheless, the former increased with a decreasing soil moisture content. The highest pick-up damage values (82%) were observed under the top-most speed (10 mm/s) at high moisture content. It can be concluded that for successful auto-transplanting of seedling the soil condition, the force applied and speed should be taken into consideration. This work will implement an effective seedling-picking performance and basis for the optimal design of end-effectors.


2003 ◽  
Vol 7 (5) ◽  
pp. 755-766 ◽  
Author(s):  
I. P. Holman ◽  
J. M. Hollis ◽  
M. E. Bramley ◽  
T. R. E. Thompson

Abstract. During the autumn of 2000, England and Wales experienced the wettest conditions for over 270 years, causing significant flooding. The exceptional combination of a wet spring and autumn provided the potential for soil structural degradation. Soils prone to structural degradation under five common lowland cropping systems (autumn-sown crops, late-harvested crops, field vegetables, orchards and sheep fattening and livestock rearing systems) were examined within four catchments that experienced serious flooding. Soil structural degradation of the soil surface, within the topsoil or at the topsoil/subsoil junction, was widespread in all five cropping systems, under a wide range of soil types and in all four catchments. Extrapolation to the catchment scale suggests that soil structural degradation may have occurred on approximately 40% of the Severn, 30–35 % of the Yorkshire Ouse and Uck catchments and 20% of the Bourne catchment. Soil structural conditions were linked via hydrological soil group, soil condition and antecedent rainfall conditions to SCS Curve Numbers to evaluate the volume of enhanced runoff in each catchment. Such a response at the catchment-scale is only likely during years when prolonged wet weather and the timing of cultivation practices lead to widespread soil structural degradation. Nevertheless, an holistic catchment-wide approach to managing the interactions between agricultural land use and hydrology, allowing appropriate runoff (and consequent flooding) to be controlled at source, rather than within the floodplain or the river channel, should be highlighted in catchment flood management plans. Keywords: flooding, soil structure, land management, Curve Number, runoff, agriculture


2017 ◽  
Vol 51 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
Stephen Razafindratsima ◽  
Zoubir Mehdi Sbartaï ◽  
François Demontoux

Sign in / Sign up

Export Citation Format

Share Document