Permittivity measurement of wood material over a wide range of moisture content

2017 ◽  
Vol 51 (6) ◽  
pp. 1421-1431 ◽  
Author(s):  
Stephen Razafindratsima ◽  
Zoubir Mehdi Sbartaï ◽  
François Demontoux
Author(s):  
Swathi Gorthi ◽  
Huifang Dou

This paper provides a survey on different kinds of prediction models developed for the estimation of soil moisture content of an area, using empirical information including meteorological and remotely sensed data. The different models employed extend over a wide range of machine learning techniques starting from Basic Linear Regression models through models based on Bayesian framework, Decision tree learning and Recursive partitioning, to the modern non-linear statistical data modeling tools like Artificial Neural Networks. The fundamental mathematical backgrounds, pros and cons, prediction results and efficiencies of all the models are discussed.


Author(s):  
Sahar Safarianbana ◽  
Runar Unnthorsson ◽  
Christiaan Richter

Abstract Wood and paper residues are usually processed as wastes, but they can also be used to produce electrical and thermal energy through processes of thermochemical conversion of gasification. This study proposes a new steady state simulation model for down draft waste biomass gasification developed using the commercial software Aspen Plus for optimization of the gasifier performance. The model was validated by comparison with experimental data obtained from six different operation conditions. This model is used for analysis of gasification performance of wood chips and mixed paper wastes. The operating parameters of temperature and moisture content (MC) have been varied over wide range and their effect on the high heating value (HHV) of syngas and cold gas efficiency (CGE) were investigated. The results show that increasing the temperature improves the gasifier performance and it increases the production of CO and H2 which leads to higher LHV and CGE. However, an increase in moisture content reduces gasifier performance and results in low CGE.


2021 ◽  
Author(s):  
Jelena Mladenovic ◽  
◽  
Nebojsa Markovic ◽  
Ljiljana Boskovic-Rakocevic ◽  
Milena Đuric ◽  
...  

Sempervivum tectorum has a similar effect as aloe vera, which is known in the treatment of various skin diseases. This herb is considered one of the safest remedies for a wide range of skin diseases. Due to its anti-inflammatory and antiseptic properties, it also serves as an excellent first aid for burns, stings and bites, because it provides quick relief and calming. Freshly squeezed juice from the leaves of the houseplant is used in the treatment of nervous disorders, epilepsy and restless dreams. The leaves are edible and can be used as an addition to salads or stews. They are not particularly tasty, but as they are rich in water, they can be put in a juicer together with other fruits or vegetables and become a refreshing drink. It is used in folk herbal medicine and as a medicine. The aim of this study was to determine the moisture content, total extracted substances, extract density, vitamin C, organic acids and proteins in house extracts.


2013 ◽  
Vol 353-356 ◽  
pp. 911-917 ◽  
Author(s):  
Mohd Hazreek Zainal Abidin ◽  
Fauziah Ahmad ◽  
Devapriya Chitral Wijeyesekera ◽  
Rosli Saad ◽  
Mohamad Faizal Tajul Baharuddin

In the past, most of the soil electrical resistivity charts were developed based on stand-alone geomaterial classification with minimal contribution to its relationship to some of geotechnical parameters. Furthermore, the values cited a very wide range of resistivity with sometimes overlapping values and having little significance to specific soil condition. As a result, it created some ambiguities during the interpretation of observations which were traditionally based on qualitative anomaly judgments of experts and experienced people. Hence, this study presents soil resistivity values based on laboratory experiment with a view to predict the soil moisture content and density in loose and dense soils. This study used a soil box and a resistivity meter to test a clayey silt soil, increasing its water usage from 1-3% based on 1500 gram of dry soil. All the moisture contents and density data were observed concurrently with 25 electrical soil resistance observations being made on the soil. All testing and formula used were in accordance with that specified in BS1377 (1990). It was apparent that the soil resistivity value was different under loose (L) and compact (C) condition with moisture content (w) and density (ρbulk) correlations being established as follows; ρbulk(C) = 2.5991ρ-0.037, ρbulk (L) = -0.111 ln (ρ) + 1.7605, w(L) = 109.98ρ-0.268, and w(C) = 121.88ρ-0.363 with determination coefficients, R2 that ranged between 0.69 0.89. This research therefore contributes a means of predicting these geotechnical parameters by related persons such as geophysicist, engineers and geologist who use these resistivity techniques in ground exploration.


2014 ◽  
Vol 136 (1) ◽  
Author(s):  
Changsoo Jang ◽  
Bongtae Han

Hygroscopic and thermal expansion behavior of advanced polymers is investigated when subjected to combined high temperature and moisture conditions. An enhanced experimental–numerical hybrid procedure is proposed to overcome the limitations of the existing methods when used at temperatures above the water boiling temperature. The proposed procedure is implemented to measure the hygrothermal strains of three epoxy molding compounds and a no-filler underfill over a wide range of temperatures including temperatures beyond the water boiling temperature. The effects of moisture content on the glass transition temperature (Tg) and coefficient of thermal expansion (CTE) are evaluated from the measurement data. A formulation to predict the Tg change as a function of moisture content is also presented.


Fire ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 34
Author(s):  
Anne-Claude Pepin ◽  
Mike Wotton

Parks Canada, in collaboration with Nova Scotia Lands and Forests and Natural Resources Canada, documented shrub fire behaviour in multiple plots burned over two periods: a spring period in June 2014 and a summer period in July 2017. The study area, located within Cape Breton Highlands National Park, comprised fifteen burn units (20 m by 20 m in size). Each unit was ignited by line ignition and burned under a wide range of conditions. Pre-burn fuel characteristics were measured across the site and used to estimate pre-fire fuel load and post-fire fuel consumption. This fuel complex was similar to many flammable shrub types around the world, results show that this shrub fuel type had high elevated fuel loads (3.17 ± 0.84 kg/m2) composed of exposed live and dead stunted black spruce as well as ericaceous shrubs, mainly Kalmia angustifolia (evergreen) and Rhodora canadensis (deciduous). Data show that the dead moisture content in this fuel complex is systematically lower than expected from the traditional relationship between FFMC and moisture content in the Canadian Fire Weather Index System but was statistically correlated with Equilibrium Moisture Content. A significant inverse relationship between bulk density and fire rate of spread was observed as well as a clear seasonal effect between the spring burns and the summer burns, which is likely attributable to the increase in bulk density in the summer. Unlike most shrub research, wind and dead moisture content did not have a statistically significant association with fire spread rates. However, we believe this to be due to noise in wind data and small dataset. Rate of spread as high as 14 m/min and flame lengths over 4 m were recorded under Initial Spread Index values of 6.4 and relative humidity of 54%. A comparison with a number of well-known shrubland spread rate prediction models was made. An aid to operational fire prediction behaviour is proposed, using a fuel type from the Canadian Fire Prediction System (O-1b) and a modified estimate of fuel moisture of the elevated fuel in the fuel complex.


2007 ◽  
Vol 537-538 ◽  
pp. 41-46 ◽  
Author(s):  
László Kuzsella ◽  
Imre Szabó

The wood is one of the most favourable structural material. It appears on all fields of the ordinary life. It is difficult to say an application where the wood is not used due to its cheap price, availability and just simply the beauty. Beside of the wide range of process technologies a new process appeared. This process changes the properties of the material and brings many new applications to this traditional material. This process is the compression of the structural wood material. This publication deals with the effect of the compression on the mechanical properties of two hardwoods (beech: fagus sylvatica, oak: quercus) by the help of the three-point bending test and the Charpy impact test.


1979 ◽  
Vol 16 (10) ◽  
pp. 2009-2021 ◽  
Author(s):  
F. S. Chute ◽  
F. E. Vermeulen ◽  
M. R. Cervenan ◽  
F. J. McVea

The results of a series of laboratory measurements of the electrical properties of samples of oil sand from the Athabasca deposit in northeastern Alberta are reported. The electrical conductivity and relative dielectric constant of the samples have been determined over a frequency range extending from 50–109 Hz. The measurements were performed on samples with a wide range of moisture content and over a temperature range from about 3–150 °C. A discussion of the methods and apparatus used is included.Sufficient data have been collected to permit correlation of the electrical properties of oil sand with density, moisture content, and temperature, and hence to indicate how the laboratory results can be extended to estimate in situ conductivities and dielectric constants. The results of these correlations, which are presented in graphical form, are of fundamental importance in any realistic assessment of the viability of electromagnetically heating large in situ deposits of oil sand.


2006 ◽  
Vol 326-328 ◽  
pp. 1661-1664
Author(s):  
Gao Lin ◽  
Dong Ming Yan

Understanding the behavior of concrete under dynamic loading conditions is an issue of great significance in earthquake engineering. Moisture content has an important influence on the strain-rate effect of concrete. In this study, both tensile and compressive experiments were carried out to investigate the rate-dependent behavior of concrete. Tensile experiments of dumbbell-shaped specimens were conducted on a MTS810 testing machine and compressive tests of cubic specimens were performed on a servo-hydraulic testing machine designed and manufactured at Dalian University of Technology, China. The strain rate varied in a wide range. The analytical formulations between the dynamic strength and strain rate were proposed for both compressive tests and tensile tests. It was concluded from the results that with the increasing strain rate, strengths of specimens with both moisture contents tended to increase and the increase seemed to be more remarkable for the saturated specimens; based on the experimental observation, a better explanation for the dynamic behavior is presented.


Sign in / Sign up

Export Citation Format

Share Document