Comparison of Coastal Green Dwellings' Ecological Strategy Take Seaweed House and Oystershell Loculus for Example

2013 ◽  
Vol 368-370 ◽  
pp. 425-429 ◽  
Author(s):  
Zhen Yu Wang ◽  
Wei Tong

With the development of science and technology, rapid urbanization makes the survival of the human environment seriously polluted and destroyed. In the new century, with the issue that how to achieve the maximum saving ,to protect environment, to reduce pollution in the whole building life cycle and to make the harmonious between architecture and nature, Green building operating emerged. Vernacular architecture is an significant type of green building, this paper illustrates Seaweed House in Jiaodong of Shandong province and Oystershell Loculus in Quanzhou of Fujian province to perform a comparative study of cultural origins, building materials and ecological characteristics of the coastal green dwellings£¬in order to use the methods of vernacular architecture for reference to green building.

2011 ◽  
Vol 280 ◽  
pp. 165-170
Author(s):  
Shi Jin Wang

Green building materials as an important factor plays important role in the promote sustainable development. However, at present a unified understanding on the green building materials in China have not been formed,the evaluation system of green building materials is not perfect.In this paper,the concept and features of green building materials are discussed deeply,and life cycle model is used to evaluate the green building materials.The status and future trend of green building materials are discussed too.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1905 ◽  
Author(s):  
Ming Hu

Knowledge and research tying the environmental impact and embodied energy together is a largely unexplored area in the building industry. The aim of this study is to investigate the practicality of using the ratio between embodied energy and embodied carbon to measure the building’s impact. This study is based on life-cycle assessment and proposes a new measure: life-cycle embodied performance (LCEP), in order to evaluate building performance. In this project, eight buildings located in the same climate zone with similar construction types are studied to test the proposed method. For each case, the embodied energy intensities and embodied carbon coefficients are calculated, and four environmental impact categories are quantified. The following observations can be drawn from the findings: (a) the ozone depletion potential could be used as an indicator to predict the value of LCEP; (b) the use of embodied energy and embodied carbon independently from each other could lead to incomplete assessments; and (c) the exterior wall system is a common significant factor influencing embodied energy and embodied carbon. The results lead to several conclusions: firstly, the proposed LCEP ratio, between embodied energy and embodied carbon, can serve as a genuine indicator of embodied performance. Secondly, environmental impact categories are not dependent on embodied energy, nor embodied carbon. Rather, they are proportional to LCEP. Lastly, among the different building materials studied, metal and concrete express the highest contribution towards embodied energy and embodied carbon.


2019 ◽  
Vol 111 ◽  
pp. 03061 ◽  
Author(s):  
Michaela Lambertz ◽  
Sebastian Theißen ◽  
Jannick Höper ◽  
Reinhard Wimmer

The new Energy Performance of Buildings Directive (EPBD) 2018 and the GebäudeEnergieGesetz (GEG) tightened the requirements for energy efficiency and the use of renewable energy sources in buildings at EU and national levels. Environmental impacts from manufacturing, dismantling and recycling of buildings are not taken into account. Green Building Certification Systems, such as the DGNB or BNB systems, are therefore the only ones that (voluntarily) set holistic, ecological requirements for buildings. Based on a Whole-Building Life Cycle Assessment, the entire building life cycle and its environmental effects are evaluated. While building services in this context are usually only included in such a simplified approach, the full scope of the produced environmental impacts are underestimated and misjudged for the reduction of emissions and other environmental impacts. This publication uses the results of a life cycle assessment of a typical office building (in Germany) to show the amount of influence building services have on environmental impacts of buildings. Furthermore the study shows an approach how the very high pro-curement and calculation effort of LCA can be reduced by linking the Building Information Modelling (BIM) Method and LCA models to enable a significantly more efficient and easier calculation process, es-pecially for building services.


2013 ◽  
Vol 479-480 ◽  
pp. 1071-1075 ◽  
Author(s):  
Yu Sheng Chang ◽  
Kuei Peng Lee

In the building industry, decreasing the CO2 emission not only is an important environmental issue but also an international responsibility in the future. This research analyzed building life cycle CO2 emission and used a building life cycle CO2 emission index (LCCO2). LCCO2 allows us to compare the impacts of different building designs to the environment and finds out the most efficient CO2 reduction strategy. A low floor house life cycle simulation showed that most CO2 emission in the life cycle comes from the daily use stage. Therefore, energy preservation in the daily life is the most important strategy to reduce CO2 emission in a building. Compared with the RC house, the light weight steel house uses more eco-friendly building materials and heat preservation materials. Therefore, the LCCO2 of the light weight steel house is reduced 31.34%. The research also showed that proper increase in the life span of the building also decreases CO2 emission. The light weight steel house is more eco-friendly than the RC house in the buildings life cycle.


2021 ◽  
Vol 14 (1) ◽  
pp. 328
Author(s):  
Marwa Dabaieh ◽  
Dalya Maguid ◽  
Deena El-Mahdy

The mounting climate change crisis and the rapid urbanization of cities have pressured many practitioners, policymakers, and even private investors to develop new policies, processes, and methods for achieving more sustainable construction methods. Buildings are considered to be among the main contributors to harmful environmental impacts, resource consumption, and waste generation. The concept of a circular economy (CE), also referred to as “circularity”, has gained a great deal of popularity in recent years. CE, in the context of the building industry, is based on the concept of sustainable construction, which calls for reducing negative environmental impacts while providing a healthier indoor environment and closing material loops. Both vernacular architecture design strategies and circular economy principles share many of the same core concepts. This paper aims at investigating circular economy principles in relation to vernacular architecture principles in the built environment. The study demonstrates how circular principles can be achieved through the use of vernacular construction techniques and using local building materials. This paper will focus on Egypt as one of the oldest civilizations in the world, with a wide vernacular heritage, exploring how circularity is rooted in old vernacular settlements and how it can inspire contemporary circular practices.


1996 ◽  
Vol 2 (7) ◽  
pp. 75-84
Author(s):  
Vytautas Martinaitis

The article suggests that non-industrial buildings in Lithuania consume half the final energy including appr.70% heat produced in electric power plants and boiler-houses. In order to ensure standard heating and ventilation conditions for these buildings in terms of climate parameters of a normal year it would require heat consumption of some 22 TWh. However, the energy is required not only for operation and maintenance of the building (for active microclimatic conditioning systems—AMCS), but also for setting up the building (for passive microclimatic conditioning systems—PMCS). The above input is therefore determined by technological level in the building and building materials industries. Rather exact evaluations show that in the course of several next years already, primary energy consumption used for a building maintenance shall be equal to that used while construction thereof. In terms of a building life cycle, this is a fairly short term. Therefore these buildings in terms of energetic approach make an intensive energy-consumption system. It is hereby suggested to apply an exergic analysis for a life cycle of a building under certain climatic conditions and PMCS and AMCS combinations defined by the local produce technology level. Using solely economical (both direct or derived) criteria for this intention is therefore insufficient, because the reliability of economic forecasts for longer prospect falls below any other forecasts of physical quantities. As an example for this, a globally-ecological evaluation of energetic systems based on thermodynamics is therefore presented, and is characterised by thermo-economic and exergo-economic criteria. Further, the article provides formulas and indices for thermodynamic evaluation of climatic conditions which indicate minimum requirements of exergy for operation of AMCS. Furthermore, MCS operating points and zones characteristic of different climatic regions are provided. Tasks for MCS thermodynamic analysis have been formulated to include the processes of production of building and insulation materials, and construction erection process. These should be considered the first three stages of the above task: indices of present exergic input in production of materials; forecast of potential exergic input in production of materials; thermodynamic optimisation of technological processes and equipment of building materials. It is therefore considered, that the integration of separate exergic loss components of building life cycle into a general optimisation task shall enable establishment of thermodynamically-optimum combination of exergic use in the buildings under concrete climatic conditions. This would launch, apart from economic, social and ecological aspects, an approach for handling strategic issues of construction and energetic interaction.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Mona Azouz

Sustainable development has become a significant worldwide concern. The past few years have seen a lot of changes. Some of these affect how we do approach - and how we should approach - environmental issues. Because of their adverse impacts to sustainability, knowledge about building materials became a crucial dimension of green change in building and design. The problem is that in Egypt there is still no database for green building ma-terials. In spite that there are currently over 120 international green labelling programs for building materials worldwide, they cannot be locally used. This is because building materials and the way they are extracted, manufactured, used, transported, recycled or disposed differ from country to country. All these factors result in insufficiency of data & information on green building materials and those who are involved in the design, construction & man-agement of building materials are acutely lacking the basic information on materials that would allow them to make constructive changes. That's why the introduction of a system for specification, assessment & se-lection of green building materials is considered to be one of the corner-stones of promoting sustainable green building development in Egypt as an attempt to fulfil Goal 11 of the Sustainable Development Goals developed by the United Nations to make cities inclusive, safe, resilient and sustainable by 2030. The aim of the research is to develop a framework for a system for evaluat-ing sustainability of building materials in Egypt to achieve greener steps to-wards sustainability with a new way of scoring sustainability of building materials that evaluates both positive & negative ecological, social & health and economic impacts through the whole life cycle. This system could be applied in the development of the New Cites that considers the unique chal-lenges of the region and the local market and could be applied all over the country taking into consideration the nature of each region with its available building materials and specific climatic conditions and the different regional priorities and requirements. The research was based on an inductive approach through studying & analy-sis of the life cycle of the building materials, the different aspects and crite-ria for the evaluation of green building materials, currently available re-sources of information about building materials in Egypt and the interna-tional & national reference values & benchmarks that could be used as a base for the new system. Findings will lead to a proposed framework of a system for specification and assessment of green building materials in Egypt. This framework de-scribes all the kind of information required and the procedures that should be taken for the development of the system from collecting data till the es-tablishment of online guide for green building materials and a digital library for accessible and reliable information on green building materials that ena-bles building designers, constructors and developers to make reasoned choices based upon the health & environmental impacts of their decisions and eases the use & selection of Green Building materials in Egypt over the coming years.


2015 ◽  
Vol 814 ◽  
pp. 504-518
Author(s):  
Chun Zhi Zhao ◽  
Quan Jiang ◽  
Li Ping Ma ◽  
Ping Zhao

Urban population has been increased rapidly and caused such urban problems as shortage of housing and traffic jam, and the continuously expanding buildings have resulted in strong impact on global resource consumption and environmental pollution. Green building materials are the basic guarantee to the quality and service life of buildings, the material carrier to realize various functions of buildings and also the foundation and support to develop green buildings. Based on the coherence and relevance of assessment on full life cycle of buildings and building materials, the influence of exterior window selection on carbon emission of buildings was analyzed in aspects of the initial stage (production, consumption and transport of building materials) of carbon emission of buildings, i.e. the intrinsic energy per unit product, operation, demolition and treatment. The comprehensive assessment was also established, and the selection of green building materials was investigated for exterior windows based on the reduction of energy consumption during full life cycle of buildings by combining such indicators as the usability, durability, fireproofness, environmental protection and functionality of exterior windows. It solved the puzzles of architects on selection of building materials and the puzzles of building material manufacturers on demand of green buildings. The selection of green building materials on green buildings was promoted and the realization of the goal of "green buildings" also assisted.


2014 ◽  
Vol 641-642 ◽  
pp. 987-993
Author(s):  
Qun Wang

By using life cycle theory, the main features of exiting data related to building carbon emissions and the various resources used in different building life cycle phases were analyzed in this article. Thus, an operational method for carbon emissions depended on simplified building life cycle was modeling. In addition, this article also verified the feasibility and validity of the model by calculating carbon emissions of one public building in feasibility stage.


Sign in / Sign up

Export Citation Format

Share Document