Mechanical Design and Dynamics Analysis on a Jumping Robot

2012 ◽  
Vol 476-478 ◽  
pp. 1112-1115
Author(s):  
Yi Li Zheng ◽  
Jin Hao Liu ◽  
Jiang Ming Kan

Aiming at the forest and wetland environment exploration mission, the mechanical structure and motion characteristic of a four-legs jumping robot are given particularly. Using the principle of virtual work states, the simplified dynamic model of one jumping leg is derived under some assumptions, and the relationship between the jumping height and thrust force of the leg is given and simulated. The simulation result have demonstrated the feasibility and validity of the theoretical analysis for the jumping robot.

2013 ◽  
Vol 373-375 ◽  
pp. 34-37
Author(s):  
Jian Xin Yang ◽  
Zhen Tao Liu ◽  
Jian Wei Sun

The dynamic modeling method for parallel robot based on the principle of virtual work and equivalent tree structure is proposed by taking off the platform and the chains as well as degenerating parallel robot into a tree structure, the closed-form solutions for the inverse and forward dynamics models of parallel robot are derived. The method is applied on kinematics and dynamics analysis of a representative 3-RRR spherical parallel robot.


Robotica ◽  
2014 ◽  
Vol 34 (9) ◽  
pp. 1948-1960 ◽  
Author(s):  
M. Filipovic ◽  
A. Djuric ◽  
Lj. Kevac

SUMMARYThis paper presents design, modelling and analysis of the selected Rigid ropes S-type Cable-suspended Parallel Robot (RSCPR). The characteristic of this system is its geometric construction which defines the kinematic model through the Jacobian matrix. The relationship between external and internal forces is defined by the Lagrange principle of virtual work. The Jacobian matrix is directly involved in the application of the Lagrange principle of virtual work and generation of the dynamic model of the RSCPR system. Selected examples of the CPR system types are analysed and the comparison of their results is presented. The software package named ORIGI has been developed for the RSCPR model verification.


2014 ◽  
Vol 597 ◽  
pp. 507-514
Author(s):  
Nan Wu ◽  
Rong Qiang Liu ◽  
Hong Wei Guo

Although much literature is available on the statics and grasp stiffness analysis of underactuated mechanisms, little research has been done on them of the underactuated cable-truss mechanism. The underactuated cable-truss mechanism grasps the target in the form of envelopment. Considering the grasping characteristics of the mechanism, the research on the relationship between the grasping force and the driving force is extremely important, as well as the study of the grasp stiffness. The statics analysis of an underactuated cable-truss mechanism, constituted by five cable-truss units, was given by means of combining with the vector method and the principle of virtual work in this paper. To prove the correctness of the analysis, the simulation was presented. The stiffness of the cable-truss unit was defined and the curve, showing the influence of the proportion relationship between the essential parameters to the stiffness, was obtained. Then, the stiffness of the mechanism was discussed.


1976 ◽  
Vol 4 (4) ◽  
pp. 219-232 ◽  
Author(s):  
Ö. Pósfalvi

Abstract The effective elastic properties of the cord-rubber composite are deduced from the principle of virtual work. Such a composite must be compliant in the noncord directions and therefore undergo large deformations. The Rivlin-Mooney equation is used to derive the effective Poisson's ratio and Young's modulus of the composite and as a basis for their measurement in uniaxial tension.


Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


2012 ◽  
Vol 28 (3) ◽  
pp. 385-401 ◽  
Author(s):  
J. Jesús Cervantes-Sánchez ◽  
José M. Rico-Martínez ◽  
Salvador Pacheco-Gutiérrez ◽  
Gustavo Cerda-Villafaña

Author(s):  
LeRoy E. Taylor ◽  
Mark R. Henderson

Abstract This paper describes the roles of features and abstraction mechanisms in the mechanical design process, mechanical designs, and product models of mechanical designs. It also describes the relationship between functions and features in mechanical design. It is our experience that many research efforts exist in the areas of design and product modeling and, further, that these efforts must be cataloged and compared. To this end, this paper culminates with the presentation of a multi-dimensional abstraction space which provides a unique framework for (a) comparing mechanical engineering design research efforts, (b) relating conceptual objects used in the life cycle of mechanical products, and (c) defining a product modeling space.


Author(s):  
Quantian Luo ◽  
Liyong Tong

This paper presents optimal design for nonlinear compliant cellular structures with bi- and multi-stable states via topology optimization. Based on the principle of virtual work, formulations for displacements and forces are derived and expressed in terms of stress and strain in all load steps in nonlinear finite element analysis. Optimization for compliant structures with bi-stable states is then formulated as: 1) to maximize the displacement under specified force larger than its critical one; and 2) to minimize the reaction force for the prescribed displacement larger than its critical one. Algorithms are developed using the present formulations and the moving iso-surface threshold method. Optimal design for a unit cell with bi-stable states is studied first, and then designs of multi-stable compliant cellular structures are discussed.


Sign in / Sign up

Export Citation Format

Share Document