Initial Timing with Cooperation of Distributed Receive Antennas

2013 ◽  
Vol 380-384 ◽  
pp. 4027-4030
Author(s):  
Chao Jin Qing ◽  
Jin Cheng Wei ◽  
Zi Shu He ◽  
You Xi Tang

To improve the accuracy of initial timing, an estimation method with the cooperation of distributed receive antennas is proposed in this paper. In the cooperation area, we consider two distributed receive antennas to receive the signal transmitted from the MS over the flat Rayleigh channels. The prior information of coverage region from each distributed receive antenna is firstly exploited to form a precondition of cooperation. Then we derive the threshold detection method based on the precondition. With the proposed method, the simulation results show that the probability of correct estimation for each distributed receive antenna is improved.

2021 ◽  
Vol 49 (2) ◽  
pp. 262-293
Author(s):  
Vincent Dekker ◽  
Karsten Schweikert

In this article, we compare three data-driven procedures to determine the bunching window in a Monte Carlo simulation of taxable income. Following the standard approach in the empirical bunching literature, we fit a flexible polynomial model to a simulated income distribution, excluding data in a range around a prespecified kink. First, we propose to implement methods for the estimation of structural breaks to determine a bunching regime around the kink. A second procedure is based on Cook’s distances aiming to identify outlier observations. Finally, we apply the iterative counterfactual procedure proposed by Bosch, Dekker, and Strohmaier which evaluates polynomial counterfactual models for all possible bunching windows. While our simulation results show that all three procedures are fairly accurate, the iterative counterfactual procedure is the preferred method to detect the bunching window when no prior information about the true size of the bunching window is available.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Manop Yingram ◽  
Suttichai Premrudeepreechacharn

The mainly used local islanding detection methods may be classified as active and passive methods. Passive methods do not perturb the system but they have larger nondetection zones, whereas active methods have smaller nondetection zones but they perturb the system. In this paper, a new hybrid method is proposed to solve this problem. An over/undervoltage (passive method) has been used to initiate an undervoltage shift (active method), which changes the undervoltage shift of inverter, when the passive method cannot have a clear discrimination between islanding and other events in the system. Simulation results on MATLAB/SIMULINK show that over/undervoltage and undervoltage shifts of hybrid islanding detection method are very effective because they can determine anti-islanding condition very fast.ΔP/P>38.41% could determine anti-islanding condition within 0.04 s;ΔP/P<-24.39% could determine anti-islanding condition within 0.04 s;-24.39%≤ΔP/P≤ 38.41% could determine anti-islanding condition within 0.08 s. This method perturbed the system, only in the case of-24.39% ≤ΔP/P ≤38.41% at which the control system of inverter injected a signal of undervoltage shift as necessary to check if the occurrence condition was an islanding condition or not.


Author(s):  
Takanori Emaru ◽  
Kazuo Imagawa ◽  
Yohei Hoshino ◽  
Yukinori Kobayashi

Proportional-Integral-Derivative (PID) control has been most commonly used to operate mechanical systems. In PID control, however, there are limits to the accuracy of the resulting movement because of the influence of gravity, friction, and interaction of joints. We have proposed a digital acceleration control (DAC) that is robust over these modeling errors. One of the most practicable advantages of DAC is robustness against modeling errors. However, it does not always work effectively. If there are modeling errors in the inertia term of the model, the DAC controller cannot control a mechanical system properly. Generally an inertia term is easily modeled in advance, but it has a possibility to change. Therefore, we propose an online estimation method of an inertia term by using a system identification method. By using the proposed method, the robustness of DAC is considerably improved. This paper shows the simulation results of the proposed method using 2-link manipulator.


2020 ◽  
Author(s):  
Costas Michaelides ◽  
Maria Iloridou ◽  
Foteini-Niovi Pavlidou

Communication in Body Area Networks (BANs) involves weak signals, due to safety regulations, huge pathloss from the absorption and usually high mobility. In this work, we introduce an improved mobility aware relaying scheme for BANs, as an alternative to the two-hop star topology extension of IEEE 802.15.6-2012, in order to enhance packet delivery. Specifically, an emergency phase (EP) is added after the regular random access phase (RAP1) of the superframe and the connected nodes transmit rescue beacons to reach disconnected nodes. When a disconnected node receives a rescue beacon, it participates in the current EP. The packets are buffered and relayed to the hub by the connected nodes. Simulation results show that it is feasible to receive more packets compared to the standard with a justified increase of energy consumption due to random access which is compensated with increased packet delivery.


2021 ◽  
Vol 01 (03) ◽  
Author(s):  
Lubin Chang

This paper proposes an interlaced attitude estimation method for spacecraft using vector observations, which can simultaneously estimate the constant attitude at the very start and the attitude of the body frame relative to its initial state. The arbitrary initial attitude, described by constant attitude at the very start, is determined using quaternion estimator which requires no prior information. The multiplicative extended Kalman filter (EKF) is competent for estimating the attitude of the body frame relative to its initial state since the initial value of this attitude is exactly known. The simulation results show that the proposed algorithms could achieve better performance compared with the state-of-the-art algorithms even with extreme large initial errors. Meanwhile, the computational burden is also much less than that of the advanced nonlinear attitude estimators.


2020 ◽  
Vol 7 ◽  
Author(s):  
Michela Mazzoccoli ◽  
Marco Altosole ◽  
Veronica Vigna ◽  
Barbara Bosio ◽  
Elisabetta Arato

About 80% of the total pollution from ships is caused by operational oil discharges into the sea, often made deliberately and in violation of international rules; the main reasons can be due to cost savings or lack of adequate facilities in ports to receive waste oils. Therefore, reducing waste oil discharges is crucial for a proper protection of the marine environment. In this regard, the paper presents the preliminary feasibility of a particular waste recycling technology, aimed at obtaining marine fuel oil from sludge, through a pyrolysis process to be carried out in a small reactor onboard. The originality of the research consists in the adaptation of pyrolysis to oily waste produced by ships, since this technology is traditionally applied to solid waste and biomass. Furthermore, the plant has to be designed for operation on board the ship, therefore under very different constraints compared to traditional land plants. Although the preliminary lab tests and simulation results in the chemical process are promising enough, there are still some technical criticalities due to the energy optimization of the reactor for an efficient use onboard of the whole system. In addition, the possibility of recycling waste, directly onboard ships, is not yet covered by mandatory regulations, which is why shipowners generally still feel unmotivated to invest in such technologies.


PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0237324 ◽  
Author(s):  
Varun Tiwari ◽  
Vinay Kumar ◽  
Mir Abdul Matin ◽  
Amrit Thapa ◽  
Walter Lee Ellenburg ◽  
...  

2010 ◽  
Vol 22 (8) ◽  
pp. 2208-2227 ◽  
Author(s):  
Intae Lee

While the sample-spacings-based density estimation method is simple and efficient, its applicability has been restricted to one-dimensional data. In this letter, the method is generalized such that it can be extended to multiple dimensions in certain circumstances. As a consequence, a multidimensional entropy estimator of spherically invariant continuous random variables is derived. Partial bias of the estimator is analyzed, and the estimator is further used to derive a nonparametric objective function for frequency-domain independent component analysis. The robustness and the effectiveness of the objective function are demonstrated with simulation results.


2014 ◽  
Vol 1044-1045 ◽  
pp. 976-981
Author(s):  
Jian Zhong Xu ◽  
Fu Qiang Yu ◽  
Ping Guang Duan ◽  
Shu Hua Li

In this paper, we proposed a new algorithm to estimate the direction of arrival (DOA) for wideband linear frequency modulation (LFM) signals, using Radon-Wigner transform (RWT) and estimation of signal parameter via rotational invariance techniques (ESPRIT). To eliminate the cross-terms, we first utilize the RWT with its excellent time-frequency concentration performance. Then, through peak searching, the number of targets, the initial interference and the frequency modulation slope are estimated. On the this base, the array signals are reconstructed. Finally, we adopt the ESPRIT algorithm to estimate the DOA of the array signals. The simulation results show that the proposed algorithm can estimate the DOA of non-stationary signals with high precision.


Sign in / Sign up

Export Citation Format

Share Document