Maximization of the Signal Impulsiveness Combining Envelope Technique with Minimum Entropy Deconvolution

2013 ◽  
Vol 392 ◽  
pp. 725-729 ◽  
Author(s):  
Rafael José Gomes de Oliveira ◽  
Mauro Hugo Mathias

The application of the HFRT (High-Frequency Resonance Technique), a demodulation based technique, is a technique for evaluation the condition of bearings and other components in rotating machinery. Another technique MED (Minimum Entropy Deconvolution) has been the subject of recent developments for application in condition monitoring of gear trains and roller bearings. This article demonstrates the effectiveness of the combined application of the MED technique with HFRT in order to enhance the capacity of HFRT to identify the characteristic fault frequencies of damaged bearings by increasing the signal impulsivity. All tests were done using data collected from an experimental test bench in laboratory. The Kurtosis value is used as an indicator of effectiveness of the combined technique and the results shown an increase of five times the original kurtosis value with the application of MED filter together with the HFRT.

2013 ◽  
Vol 664 ◽  
pp. 901-906
Author(s):  
Rafael José Gomes de Oliveira ◽  
Valdeci Donizete Gonçalves ◽  
Everton Coelho de Medeiros ◽  
Mauro Hugo Mathias

Nowadays the method based on demodulation by envelope finds wide application in industry as a technique for evaluation of bearings and other components in rotating machinery. In recent years the application of Wavelets for fault diagnosis in machinery has also obtained good development. This article demonstrates the effectiveness of the combined application of Wavelets and envelope technique (also known as HFRT High-Frequency Resonance Technique) to remove background noise from signals collected from defect bearings and identification of the characteristic frequencies of defects. A comparison of the results obtained with the isolated application of only one method against the combined technique is performed showing the increased capacity in detection of faults in rolling bearings.


Author(s):  
I Misztal ◽  
I Aguilar ◽  
D Lourenco ◽  
L Ma ◽  
J Steibel ◽  
...  

Abstract Genomic selection is now practiced successfully across many species. However, many questions remain such as long-term effects, estimations of genomic parameters, robustness of GWAS with small and large datasets, and stability of genomic predictions. This study summarizes presentations from at the 2020 ASAS symposium. The focus of many studies until now is on linkage disequilibrium (LD) between two loci. Ignoring higher level equilibrium may lead to phantom dominance and epistasis. The Bulmer effect leads to a reduction of the additive variance; however, selection for increased recombination rate can release anew genetic variance. With genomic information, estimates of genetic parameters may be biased by genomic preselection, but costs of estimation can increase drastically due to the dense form of the genomic information. To make computation of estimates feasible, genotypes could be retained only for the most important animals, and methods of estimation should use algorithms that can recognize dense blocks in sparse matrices. GWAS studies using small genomic datasets frequently find many marker-trait associations whereas studies using much bigger datasets find only a few. Most current tools use very simple models for GWAS, possibly causing artifacts. These models are adequate for large datasets where pseudo-phenotypes such as deregressed proofs indirectly account for important effects for traits of interest. Artifacts arising in GWAS with small datasets can be minimized by using data from all animals (whether genotyped or not), realistic models, and methods that account for population structure. Recent developments permit computation of p-values from GBLUP, where models can be arbitrarily complex but restricted to genotyped animals only, and to single-step GBLUP that also uses phenotypes from ungenotyped animals. Stability was an important part of nongenomic evaluations, where genetic predictions were stable in the absence of new data even with low prediction accuracies. Unfortunately, genomic evaluations for such animals change because all animals with genotypes are connected. A top ranked animal can easily drop in the next evaluation, causing a crisis of confidence in genomic evaluations. While correlations between consecutive genomic evaluations are high, outliers can have differences as high as one SD. A solution to fluctuating genomic evaluations is to base selection decisions on groups of animals. While many issues in genomic selection have been solved, many new issues that require additional research continue to surface.


1987 ◽  
Vol 10 (4) ◽  
pp. 641-670 ◽  
Author(s):  
Ram Sankar Pathak ◽  
Lokenath Debnath

This paper is concerned with recent developments on the Stieltjes transform of generalized functions. Sections 1 and 2 give a very brief introduction to the subject and the Stieltjes transform of ordinary functions with an emphasis to the inversion theorems. The Stieltjes transform of generalized functions is described in section 3 with a special attention to the inversion theorems of this transform. Sections 4 and 5 deal with the adjoint and kernel methods used for the development of the Stieltjes transform of generalized functions. The real and complex inversion theorems are discussed in sections 6 and 7. The Poisson transform of generalized functions, the iteration of the Laplace transform and the iterated Stieltjes transfrom are included in sections 8, 9 and 10. The Stieltjes transforms of different orders and the fractional order integration and further generalizations of the Stieltjes transform are discussed in sections 11 and 12. Sections 13, 14 and 15 are devoted to Abelian theorems, initial-value and final-value results. Some applications of the Stieltjes transforms are discussed in section 16. The final section deals with some open questions and unsolved problems. Many important and recent references are listed at the end.


1987 ◽  
Vol 20 (6) ◽  
pp. 32-39 ◽  
Author(s):  
K T V Grattan

The subject area of fibre optic sensing is one in which there has been shown a very rapid expansion of interest over the last few years. Many novel techniques are appearing in the literature and some products are available to the industrial user. The background to fibre optic means of temperature sensing and some recent developments will be reviewed in this paper.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881536 ◽  
Author(s):  
Yong Zhou ◽  
Xiaogang Zhou

The reliable and repeatable experimental ground testing of aircraft actuator is an essential phase before flight testing. It is not an easy task to simulate the alternating aerodynamic forces on actuators reasonably and accurately in a laboratory. In this article, an experimental test bench is designed to simulate the aerodynamic forces by a hydraulic actuator, which replicates the operating conditions that the actuator will encounter in service. In order to improve the force control performance, a feed-forward compensator and a fuzzy proportional–integral–derivative controller are designed. Both simulation and experimental results show that the designed method can improve the control performance.


1933 ◽  
Vol 125 (1) ◽  
pp. 201-289
Author(s):  
E. W. Robey ◽  
W. F. Harlow

The demand for heavier duties and exacting guarantees of performance which has accompanied recent developments in steam-raising plants, has necessitated closer inquiry into the fundamental principles on which their performance depends. The authors present their views on certain aspects of the subject. These have been formed as a result of experience, combined with a consideration of the work of laboratory investigators. It would appear that important facts revealed by laboratory research do not always receive the attention due to them, and frequently erroneous ideas persist for years without question. The paper discusses the function of the chain grate mechanical stoker with particular reference to the subject of furnace design and secondary air application. It deals with the effect on the size and cost of equipment generally, which would result from a closer observance of the laws of heat transfer and frictional loss in flowing gases, and discusses particularly the phenomenon of delayed heat release in flue gases and the effect of this in boiler plant performance. The cause and prevention of air heater corrosion is dealt with, and the results of investigations into the dew point temperature of flue gases are given.


2013 ◽  
Vol 54 (1) ◽  
Author(s):  
Оleksii Puzik ◽  
Gennadii Zaionchkovskyi ◽  
Taras Tarasenko

Author(s):  
Dimiter Toshkov

AbstractThe link between age and happiness has been the subject of numerous studies. It is still a matter of controversy whether the relationship is U-shaped, with happiness declining after youth before bouncing back in old age, or not. While the effect of age has been examined conditional on income and other socio-demographic variables, so far, the interactions between age and income have remained insufficiently explored. Using data from the European Social Survey, this article shows that the nature of the relationship between age and happiness varies strongly with different levels of relative income. People in the lowest decile of the income distribution experience a ‘hockey stick’: a deep decline in self-reported happiness until around age 50–55 and a small bounce back in old age. The classic U-curve is found mostly in the middle-income ranks. For people at the top of the income distribution, average happiness does not vary much with age. These results demonstrate the important role of income in moderating the relationship between age and happiness.


Sign in / Sign up

Export Citation Format

Share Document