Nanofibers/PVA Blended Nano Fibre Matrix for Nervous Tissue Regeneration

2013 ◽  
Vol 404 ◽  
pp. 95-99 ◽  
Author(s):  
Ping Zhang ◽  
Shan Shan Wu

Nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. Here, we found that the blended solutions of chitosan (CS) with Poly (vinyl alcohol) (PVA) are appropriate for electrospinning when they form conductive, unstructured fluids displaying plasticity, rather than elasticity, in the bulk and at the interface. We then studied that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this article is to provide valuable methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries.

2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
A Köhne ◽  
HC Lehmann ◽  
O Kiehl ◽  
G Meyer zu Hörste ◽  
HP Hartung ◽  
...  

2021 ◽  
pp. 2100134
Author(s):  
Srijoni Sengupta ◽  
Abhishek Singh ◽  
Koushik Dutta ◽  
Ram Prasad Sahu ◽  
Satish Kumar ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Mina Keshvardoostchokami ◽  
Sara Seidelin Majidi ◽  
Peipei Huo ◽  
Rajan Ramachandran ◽  
Menglin Chen ◽  
...  

Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.


2011 ◽  
Vol 236-238 ◽  
pp. 2221-2224
Author(s):  
Kui Hua Zhang ◽  
Xiu Mei Mo

In order to improve water-resistant ability silk fibroin (SF) and SF/P(LLA-CL) blended nanofibrous scaffolds for tissue engineering applications, methanol vapor were used to treat electrospun nanofibers. SEM indicated SF and SF/ P(LLA-CL) scaffolds maintained nanofibrous structure after treated with methanol vapor and possessed good water-resistant ability. Characterization of 13C NMR clarified methanol vapor induced SF conformation from random coil or α- helix to β-sheet. Moreover, treated SF/ P (LLA-CL) nanofibrous scaffolds still kept good mechanical properties. Methanol vapor could be ideal method to treat SF and SF/ P(LLA-CL) nanofibrous scaffolds for biomedical applications.


ChemInform ◽  
2015 ◽  
Vol 46 (15) ◽  
pp. no-no
Author(s):  
Radhakrishnan Sridhar ◽  
Rajamani Lakshminarayanan ◽  
Kalaipriya Madhaiyan ◽  
Veluchamy Amutha Barathi ◽  
Keith Hsiu Chin Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document