Metalloproteinases as mediators of tissue regeneration in the peripheral nerve: an important role for metalloproteinase-2

2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
A Köhne ◽  
HC Lehmann ◽  
O Kiehl ◽  
G Meyer zu Hörste ◽  
HP Hartung ◽  
...  
2013 ◽  
Vol 404 ◽  
pp. 95-99 ◽  
Author(s):  
Ping Zhang ◽  
Shan Shan Wu

Nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. Here, we found that the blended solutions of chitosan (CS) with Poly (vinyl alcohol) (PVA) are appropriate for electrospinning when they form conductive, unstructured fluids displaying plasticity, rather than elasticity, in the bulk and at the interface. We then studied that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this article is to provide valuable methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries.


2019 ◽  
Vol 7 (12) ◽  
pp. 5451-5466 ◽  
Author(s):  
Cristiana R. Carvalho ◽  
João B. Costa ◽  
Lígia Costa ◽  
Joana Silva-Correia ◽  
Zi Kuang Moay ◽  
...  

In this work, the physicochemical and biological effect of incorporating human hair extracted keratin in 5% degree of acetylation chitosan membranes and its possible use as a guided tissue regeneration-based membrane were investigated.


Author(s):  
Roqia Ashraf ◽  
Hasham S. Sofi ◽  
Mushtaq A. Beigh ◽  
Shafquat Majeed ◽  
Shabana Arjamand ◽  
...  

Author(s):  
Arthur J. Wasserman ◽  
Azam Rizvi ◽  
George Zazanis ◽  
Frederick H. Silver

In cases of peripheral nerve damage the gap between proximal and distal stumps can be closed by suturing the ends together, using a nerve graft, or by nerve tubulization. Suturing allows regeneration but does not prevent formation of painful neuromas which adhere to adjacent tissues. Autografts are not reported to be as good as tubulization and require a second surgical site with additional risks and complications. Tubulization involves implanting a nerve guide tube that will provide a stable environment for axon proliferation while simultaneously preventing formation of fibrous scar tissue. Supplementing tubes with a collagen gel or collagen plus extracellular matrix factors is reported to increase axon proliferation when compared to controls. But there is no information regarding the use of collagen fibers to guide nerve cell migration through a tube. This communication reports ultrastructural observations on rat sciatic nerve regeneration through a silicone nerve stent containing crosslinked collagen fibers.Collagen fibers were prepared as described previously. The fibers were threaded through a silicone tube to form a central plug. One cm segments of sciatic nerve were excised from Sprague Dawley rats. A control group of rats received a silicone tube implant without collagen while an experimental group received the silicone tube containing a collagen fiber plug. At 4 and 6 weeks postoperatively, the implants were removed and fixed in 2.5% glutaraldehyde buffered by 0.1 M cacodylate containing 1.5 mM CaCl2 and balanced by 0.1 M sucrose. The explants were post-fixed in 1% OSO4, block stained in 1% uranyl acetate, dehydrated and embedded in Epon. Axons were counted on montages prepared at a total magnification of 1700x. Montages were viewed through a dissecting microscope. Thin sections were sampled from the proximal, middle and distal regions of regenerating sciatic plugs.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2017 ◽  
Vol 22 (2) ◽  
pp. 3-5
Author(s):  
James B. Talmage ◽  
Jay Blaisdell

Abstract Physicians use a variety of methodologies within the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Sixth Edition, to rate nerve injuries depending on the type of injury and location of the nerve. Traumatic injuries that cause impairment to the peripheral or brachial plexus nerves are rated using Section 15.4e, Peripheral Nerve and Brachial Plexus Impairment, for upper extremities and Section 16.4c, Peripheral Nerve Rating Process, for lower extremities. Verifiable nerve lesions that incite the symptoms of complex regional pain syndrome, type II (similar to the former concept of causalgia), also are rated in these sections. Nerve entrapments, which are not isolated traumatic events, are rated using the methodology in Section 15.4f, Entrapment Neuropathy. Type I complex regional pain syndrome is rated using Section 15.5, Complex Regional Pain Syndrome for upper extremities or Section 16.5, Complex Regional Pain Syndrome for lower extremities. The method for grading the sensory and motor deficits is analogous to the method described in previous editions of AMA Guides. Rating the permanent impairment of the peripheral nerves or brachial plexus is similar to the methodology used in the diagnosis-based impairment scheme with the exceptions that the physical examination grade modifier is never used to adjust the default rating and the names of individual nerves or plexus trunks, as opposed to the names of diagnoses, appear in the far left column of the rating grids.


1998 ◽  
Vol 3 (5) ◽  
pp. 1-3
Author(s):  
Richard T. Katz ◽  
Sankar Perraraju

Abstract The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, offers several categories to describe impairment in the shoulder, including shoulder amputation, abnormal shoulder motion, peripheral nerve disorders, subluxation/dislocation, and joint arthroplasty. This article clarifies appropriate methods for rating shoulder impairment in a specific patient, particularly with reference to the AMA Guides, Section 3.1j, Shoulder, Section 3.1k, Impairment of the Upper Extremity Due to Peripheral Nerve Disorders, and Section 3.1m, Impairment Due to Other Disorders of the Upper Extremity. A table shows shoulder motions and associated degrees of motion and can be used in assessing abnormal range of motion. Assessments of shoulder impairment due to peripheral nerve lesion also requires assessment of sensory loss (or presence of nerve pain) or motor deficits, and these may be categorized to the level of the spinal nerves (C5 to T1). Table 23 is useful regarding impairment from persistent joint subluxation or dislocation, and Table 27 can be helpful in assessing impairment of the upper extremity after arthroplasty of specific bones of joints. Although inter-rater reliability has been reasonably good, the validity of the upper extremity impairment rating has been questioned, and further research in industrial medicine and physical disability is required.


2004 ◽  
Vol 171 (4S) ◽  
pp. 51-51
Author(s):  
Roger E. De Filippo ◽  
Hans G. Pohl ◽  
James J. Yoo ◽  
Anthony Atala

Sign in / Sign up

Export Citation Format

Share Document