Research on the Mixture Ratio Design of Ultra-High Strength Concrete

2013 ◽  
Vol 405-408 ◽  
pp. 2782-2788
Author(s):  
Li Bin Xu ◽  
Nai Qian Feng ◽  
Kia Hui Tew

Ultra-high strength concrete (including the coarse aggregate of over 5mm), with high compressive strength and strong durability, is regarded as a new-type building material that could economize on raw materials, land and energy and the development trend of concrete technology both at home and abroad. However, the large consumption of binding materials, low water-binder ratio and the viscous mixture are prone to give rise to the inferior pumping capacity, pipe blockage and pipe break, thus preventing its massive application in the real projects. Therefore, through the design of reasonable mixture ratio, this paper makes up and produces the pumping ultra-high strength concrete of over 100MPa that contains coarse aggregate by adopting the compound design of mineral admixtures, such as slag powder, fly ash and ganister sand so as to optimize the relevant parameter of the mixture ratio. Finally it comes to the conclusion that while making up the ultra-high strength concrete of over 100MPa, it is much more reasonable to appropriately add the mixing amount of the mineral admixtures, increase the water-cement ratio and decrease the water-binder ratio.

2011 ◽  
Vol 261-263 ◽  
pp. 411-415
Author(s):  
Er Bu Tian ◽  
Feng Chao Wang ◽  
Ren Wei Zhang ◽  
Tao Ji

People often use superplasticizer and mineral admixtures (such as steel slag, slag, etc.) to increase the density of concrete and improve concrete strength, but don’t use coarse aggregate gradding. The paper selects the coarse aggregate of skeleton structure from several grading concept, and uses Uniform Design to test high strength concrete workability, and analyses results. It is shown from the results that the method of Uniform Design can significantly reduce the workload, and concrete mixture slump increases linearly with the water-cement ratio and sand percentage, but decreases linearly with steel slag addition, and the water released from the flocculation of cement by superplasticizer can increase the slump, and most of water plays the role of lubricant before it reacts with cement, and the effect of slump that sand extends coarse aggregate skeleton are greater than that sand surface area increases.


Author(s):  
Afzal Basha Syed ◽  
Jayarami Reddy B ◽  
Sashidhar C

In present era, high-strength concrete is progressively utilized in modern concrete technology and particularly in the construction of elevated structures. This examination has been directed to explore the properties of high-strength concrete that was delivered by using stone powder (SP) as an option of extent on sand after being processed. The aim of the research is to study the effect of replacement of sand with stone powder and substitution of cement with mineral admixtures (GGBS & Zeolite) on the mechanical properties of high strength concrete. The test results showed clear improvement in compression and split tensile nature of concrete by using stone powder and mineral admixtures together in concrete. The increment in the magnitude of compressive strength and split tensile strength are comparable with conventional concrete.


Author(s):  
Yong Du ◽  
Yu Zhu ◽  
Richard Liew

High strength concrete encased columns are being developed for erecting high-rise buildings as their higher load bearing capacity and smaller cross section size than normal concrete encased column. At ambient temperature, high strength concrete is always mixed with steel fibers to improve its ductility to match the material properties of high strength steel while constructing concrete encased columns. However, for high strength concrete at elevated temperature, spalling usually can be observed due to different thermal properties of various materials mixed such as siliceous aggregate, cement, silica fume, grit and moisture. Most of previous studies present that pore vapor compression induces high strength concrete spalling and propylene fiber can prevent it from spalling. The aim of the present experimental study is to discover the minimum propylene fiber ratio to prevent spalling of 115~120MPa concrete with aggregate and steel fiber. The experimental study carried out on 17 specimens with different water-binder ratio, steel fiber ratio and monofilament propylene fiber ratio exposed to ISO834 fire. The test results that 0.15% by volume of propylene fibers can prevent 115/120MPa high strength concrete with aggregate from spalling. It is worth noting that propylene fiber mixture ratio of 0.15% is lower than that of EN 1992-1-2 proposed up to 0.22%. Lower propylene fiber mixture ratio has been soak to improve the workability of 115~120MPa high strength concrete with steel fibers.


2013 ◽  
Vol 357-360 ◽  
pp. 1328-1331
Author(s):  
Bai Rui Zhou ◽  
Dong Dong Han ◽  
Jian Hua Yang ◽  
Yi Liang Peng ◽  
Guo Xin Li

Portland cement, crushed stone, sand and superplasticizer were used to obtain a high strength concrete with a low water to binder ratio. A reticular polypropylene fiber and a single polypropylene fiber were used to improve the strength of the high strength concrete, but the effects of the two fibers on the slump and strengths were quite different. The reasons of the differences were the surface area and the modulus of elasticity of the fibers. The results show the reticular fiber was better to used in high strength concretes.


2022 ◽  
Vol 1048 ◽  
pp. 359-365
Author(s):  
Ihtesham Hussain Mohammed ◽  
Ahmed Majid Salim Al Aamri ◽  
Shakila Javed ◽  
Yahya Ubaid Al Shamsi

In this study, an experimental investigation was done to study the behaviour of Normal Strength Concrete (NSC) and High Strength Concrete (HSC) Plain beams under torsion with the concrete mix of M40 and M100. No mineral admixtures are used to obtain the required strength of concrete. Eight NSC beams and eight HSC beams whose width was varying with 75 mm, 100 mm, and 150 mm; depth varying as 75 mm, 100 mm, 150 mm and 200 mm; and span of the beams varying 600 mm, 800 mm and 1200 mm were casted and cured to stud the effect of torsion. The principle aim of this study was to understand the torsional behaviour of the NSC and HSC beams for rotation, cracking, size effect and torsional strength. A standard torsional loading method was used for conducting the testing of beams. The results obtained were compared with different theories and code equations. It was observed that the torsional strength of the beam increases with the increase in strength of concrete. HSC beams have higher torsional strength than the NSC beams which has the same amount of reinforcement.


2014 ◽  
Vol 605 ◽  
pp. 147-150
Author(s):  
Seong Uk Hong ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

This study used the ultrasonic pulse velocity method, one of the non-destructive test methods that does not damage the building for maintenance of to-be-constructed concrete structures using recycled aggregates in order to estimate the compressive strength of high strength concrete structure using recycled coarse aggregate and provide elementary resources for technological establishment of ultrasonic pulse velocity method. 200 test pieces of high strength concrete 40, 50MPa using recycled coarse aggregate were manufactured by replacement rates (0, 30, 50, 100%) and age (1, 7, 28, 180days), and air curing was executed to measure compressive strength and wave velocity. As the result of compressive strength measurement, the one with age of 180day and design strength of 40MPa was 43.69MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 42.82, 41.22, 37.35MPa, and 50MPa was 52.50MPa, recycled coarse aggregate replacement rate of 30% 50% 100% were 49.02, 46.66, 45.30MPa, and while it could be seen that the test piece substituted with recycled aggregate was found to have lower strength than the test piece with natural aggregate only, but it still reached the design strength to a degree. The correlation of compressive strength and ultrasonic pulse velocity was found and regression analysis was conducted. The estimation formula for compressive strength of high strength concrete using recycled coarse aggregate was found to be Fc=0.069Vp4.05, R2=0.66


2017 ◽  
Vol 22 (5) ◽  
pp. 1816-1826 ◽  
Author(s):  
Piotr Smarzewski ◽  
Danuta Barnat-Hunek ◽  
Walery Jezierski

2020 ◽  
Vol 402 ◽  
pp. 50-55 ◽  
Author(s):  
Muttaqin Hasan ◽  
Aulia Desri Datok Riski ◽  
Taufiq Saidi ◽  
Husaini ◽  
Putroe Nadhilah Rahman

This paper presents the flexural and splitting tensile strength of high strength concrete (HSC) with diatomite micro particles (DMP) as a mineral additive. In order to have micro particles, the diatomite from Aceh Besar District was ground and sieved with sieve size of 250 mm. The particles were then calcined at the temperature of 600 °C for 5 hours. Four mixtures were designed with different DMP to binder ratio (DMP/b). The ratio was 0%, 5%, 10% and 15%, and the water to binder ratio was 0.3. Four beam specimens with a size of 10 cm × 10 cm × 40 cm and four cylinder-specimens with 10 cm diameter and 20 cm high were prepared for each mixture. Flexural and splitting tensile tests were conducted based on ASTM C78 and ASTM C496/496M. The maximum flexural strength was reached at DMP/b of 5% while the maximum splitting tensile strength was reached at DMP/b of 0%.


Sign in / Sign up

Export Citation Format

Share Document