Research on Landscape Limestone Damage and Deformation under Uniaxial Compression Based on Acoustic Emission

2013 ◽  
Vol 423-426 ◽  
pp. 914-919 ◽  
Author(s):  
Yong Qin Xiao ◽  
Yi Ping Wan ◽  
Bao Xian Liu

In order to establish the relation between acoustic emission parameter and rock mechanical damage mechanism, as well as to better figure out landscape limestone damage and deformation influenced by uniaxial compression, MTS815 rock mechanical electro-hydraulic servo test system and 8CHSPCI-2 acoustic emission and detection system are applied to implement a test and research on damage evolution of limestone under uniaxial compression and the corresponding acoustic emission feature. On this basis, the acoustic emission feature of limestone under uniaxial compression is analyzed. Moreover, based on the damage variable of normalized accumulated emission ringing count, the uniaxial compression limestone damage model based on acoustic emission feature is established, and the damage evolution curve and equation of limestone is figured out as well. Shown by the research, acoustic emission information reflects the internal damage of limestone, and is closely related with densification of inner original fracture, as well as emerging, developing, and merging of new fractures. The acoustic emission feature of limestone perfectly describes its deformation and damage evolution.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Bin Xu ◽  
Xiaoyan Lei ◽  
P. Wang ◽  
Hui Song

There are various definitions of damage variables from the existing damage models. The calculated damage value by the current methods still could not well correspond to the actual damage value. Therefore, it is necessary to establish a damage evolution model corresponding to the actual damage evolution. In this paper, a strain rate-sensitive isotropic damage model for plain concrete is proposed to describe its nonlinear behavior. Cyclic uniaxial compression tests were conducted on concrete samples at three strain rates of 10−3s−1, 10−4s−1, and 10−5s−1, respectively, and ultrasonic wave measurements were made at specified strain values during the loading progress. A damage variable was defined using the secant and initial moduli, and concrete damage evolution was then studied using the experimental results of the cyclic uniaxial compression tests conducted at the different strain rates. A viscoelastic stress-strain relationship, which considered the proposed damage evolution model, was presented according to the principles of irreversible thermodynamics. The model results agreed well with the experiment and indicated that the proposed damage evolution model can accurately characterize the development of macroscopic mechanical weakening of concrete. A damage-coupled viscoelastic constitutive relationship of concrete was recommended. It was concluded that the model could not only characterize the stress-strain response of materials under one-dimensional compressive load but also truly reflect the degradation law of the macromechanical properties of materials. The proposed damage model will advance the understanding of the failure process of concrete materials.


2019 ◽  
Vol 213 ◽  
pp. 377-385 ◽  
Author(s):  
Qingheng Gu ◽  
Qing Ma ◽  
Yunliang Tan ◽  
Zhichuang Jia ◽  
Zenghui Zhao ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Ye Lou ◽  
Guangqing Zhang ◽  
Xiaoxiao Wang

Crack initiation is related to the behavior of the preexisting microcracks within a rock specimen, which suggests the specimen starts to fail. The determination of crack initiation stress is important for identifying the elastic stage and related mechanical parameters. Uniaxial compression tests with acoustic emission monitoring were performed to study crack initiation for tight sandstone, loose sandstone, and granite. The evolution of the cracking mode, i.e., the statistics of the cracking mode under compression, was obtained through modified acoustic emission parameter analysis. Based on the logarithm of the acoustic emission parameter (LAEP), a cracking mode analysis (CMA) method is proposed and used to determine the crack initiation stress. Results from the tests indicate that the crack initiation stress between the same rock specimens obtained by CMA is very close. The mean ratio of crack initiation stress to compression strength is 0.45, 0.34, and 0.35 for tight sandstone, loose sandstone, and granite, respectively. According to the results of CMA, crack volumetric strain (CVS) method, and lateral strain response (LSR) method, there is no big difference among those methods in tight sandstone and loose sandstone. In granite, the results obtained by CMA are close to those obtained by CVS, but smaller than those obtained by LSR. The CMA interprets the initiation of cracks from the fracture behavior of microcracks and is an objective method to determine the initiation stress.


2010 ◽  
Vol 168-170 ◽  
pp. 1388-1395
Author(s):  
Ming Ji ◽  
Nong Zhang ◽  
Feng Gao

Uniaxial compression and acoustic emission experiments of calcareous mudstone with different water content were carried out by using microcomputer controlled electro-hydraulic servo compression testing machine control system of YAW series equipped by coal-rock acoustic and electric data acquisition system of CTA-1-type. Mchanical properties and acoustic emission law of calcareous mudstone were studied. It is concluded from experiment result that rock’s elastic modulus and compressive strength both decrease with increase water content but peak stress shows the opposite trend. It is also found that calcareous mudstone is brittleness with low water content but when water content reaches saturation, calcareous mudstone presents plastic features. Acoustic emission curve fits well with stress-strain curve: acoustic emission activity begins intensifying when stress reaches 70% of peak stress, correspondingly, acoustic emission is up to maximum at peak stress. Based on Weibull hypothesis and acoustic emission experiment, damage law of water bearing calcareous mudstone is researched and damage evolution equation with time variable is advanced.


2015 ◽  
Vol 639 ◽  
pp. 427-434 ◽  
Author(s):  
Kerim Isik ◽  
Maria Doig ◽  
Helmut Richter ◽  
Till Clausmeyer ◽  
A. Erman Tekkaya

Advanced high strength steels are still one of the best alternatives for light weight design in the automotive industry. Due to their good performances like high strength and high energy absorption, those steel grades are excellent for body in white components. Because of their restricted ductility, which sometimes leads to the formation of cracks without or low necking during forming operations, conventional forming limit diagrams may fall short. As a remedy, an enhanced variant of the Lemaitre continuum mechanical damage model (CDM) is presented in this work.Previous model extensions of the Lemaitre model improved the damage prediction for the shear and compression dominated stress states by introducing an additional weighting factor for the influence of compression on damage evolution, the so called crack closure parameter h. However, the possible range of the fracture behavior predicted by such models for low and negative stress triaxialities is limited. In this work, the Lemaitre CDM has been enhanced by considering the maximal shear stress to predict the fracture occurrence under shear. Previous models for the effect of void closure on damage evolution are reviewed and a novel model enhancement taking into account the maximal shear stresses is described. The determination of the damage model parameters is presented for a dual phase steel. For this particular material, the response of model enhancement on the failure prediction is discussed for a test part.


Materials ◽  
2016 ◽  
Vol 9 (11) ◽  
pp. 841 ◽  
Author(s):  
Chenhui Wei ◽  
Wancheng Zhu ◽  
Shikuo Chen ◽  
Pathegama Ranjith

2011 ◽  
Vol 105-107 ◽  
pp. 1597-1602 ◽  
Author(s):  
You Gang Wang ◽  
Xiang Feng Liu

Rocks and other rocklike solid materials have inherent defects inside. The defects of rock will be evolved under loading. The evolution process and extent of defects can be described by the damage variable. But which physical or geometrical parameters can be used to define the damage, there has no consistent conclusion domestic and aboard. Moreover, limited by the method of experimental, it is difficult to obtain the parameters to depict the damage variable directly. In order to obtained the evolution law of the interior defects in the solid material, the non-conduct geophysical prospecting measure as AE (Acoustic Emission) will be the leading measure to prospect the interior defects and it’s evolution under outside loading. In the present paper, the AE method was used to obtain the AE parameters during the uniaxial compression process of coal and rock. Therefore, uniaxial compression and AE tests on coal and mudstone were conducted, and the curves among the AE energy accumulation, stress and strain were obtained after analyzing the results of tests data. Based on the principle of damage mechanics and thermodynamics, the damage evolution of coal and rock was deduced through analyzing the experimental results, the curves of damage and AE accumulation were obtained also. By analyzing and fitting the curves of damage and AE energy accumulation, the relation between the AE energy accumulation and stress-strain was obtained and verified through the experimental data.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yong Chen ◽  
Yugui Yang ◽  
Feng Gao ◽  
Xiangxiang Zhang

Mechanical parameters of the rock are important for the design of geotechnical, mining engineering, and petroleum reservoir projects. Many researches have suggested that the mechanical variables of rock specimens, such as compressive strength and elastic modulus, do not have a single fixed value. Uncertainty in the basic mechanical variables of the rock material can significantly affect the structural performance and safety. In this study, a series of compression experiments with acoustic emission have been performed on rock specimens. The damage evolution characteristics of the rock in the process of loading were studied, and the macromechanical behaviors were obtained at the same time. Distribution characteristics of the strength and elastic modulus as random variables are illustrated, and the statistical damage model is presented by the authors to formulate analytical constitutive relations for deformation behavior. The comparisons between predicted results and experimental data show that the statistical damage constitutive model could well reproduce the deformation process of rock materials.


Sign in / Sign up

Export Citation Format

Share Document