A New Realization Method of Control System for Magnetic Bearing

2010 ◽  
Vol 43 ◽  
pp. 32-35
Author(s):  
Wen Yue Zhang ◽  
Yan Jun Ge ◽  
Jun Yue Yang

Aiming at the problems of complex circuit and parameter adjustment in traditional current type power amplifier of Magnetic Bearing (MB), a new realization method of control system based on DSP (Digital Signal Processor) is proposed. The difference with traditional power amplifier is that the current control loop is realized through software in DSP, so some advanced control strategies will be adopted easily, and the control parameters could be modified freely. Besides, the models established in MATLAB using common control strategy and advanced strategy are simulated separately, and the simulation results show the better effect can be obtained with the latter. Finally, the rotor of a 1-DOF MB prototype can be suspended within 0.01mm in the experiment, and the control strategy and parameters can be modified freely by software in DSP.

2017 ◽  
Vol 11 (1) ◽  
pp. 14-22
Author(s):  
Zhang Damin ◽  
Wang Shitao ◽  
Kang Shaobo ◽  
Zhang Ji

Predictive current control strategy has captured much concern recently in power converters. As for the multi-pulse flexible-topology thyristor rectifiers (m-PFTTR), the symmetry of the input line-to-line voltages has great influence upon the implementation of the control strategy. Existing literatures have mainly focused on the implementation under ideal condition, i.e., the input line-to-line voltages, being critical to the predictive current controller, were supposed to be symmetrical. In fact, the unbalance of the input line-to-line voltages usually exists in the windings of the zigzag transformer at front end and the A/D converter of the digital signal processor (DSP). This paper presents a new method to dynamically regulate the input line-to-line voltages to ensure the symmetry of each other. It is realized through the instantaneous correction of the bias values in the course of sampling, and the correction is embodied in the modified control algorithm. The paper includes analyses of the m-PFTTR as well as the control algorithm, simulation and experiments. Simulation and experimental results demonstrate the effectiveness of the presented method.


2011 ◽  
Vol 413 ◽  
pp. 184-189
Author(s):  
Xiang Ju Jiang ◽  
Er Lin Liu

Matrix converter is a kind of power electric converter by AC-AC transformation with its excellent input and output characteristics.After analysis of matrix converter system structure in the paper,a digital signal processor based on DSP and CPLD is designed. The design includes the hardware structure and the program flowsheet.DSP and CPLD is the core of the matrix converter - Asynchronous motor vector control system, including system main circuit, other peripheral hardware circuit, control and protection circuits, software design process and so on. The hardware control strategy and software realization scheme of the system are discussed in detail. The experimental results verify that the control strategy of the system is valid and the design of the software and hardware are reasonable.


2021 ◽  
Vol 13 (11) ◽  
pp. 6388
Author(s):  
Karim M. El-Sharawy ◽  
Hatem Y. Diab ◽  
Mahmoud O. Abdelsalam ◽  
Mostafa I. Marei

This article presents a control strategy that enables both islanded and grid-tied operations of a three-phase inverter in distributed generation. This distributed generation (DG) is based on a dramatically evolved direct current (DC) source. A unified control strategy is introduced to operate the interface in either the isolated or grid-connected modes. The proposed control system is based on the instantaneous tracking of the active power flow in order to achieve current control in the grid-connected mode and retain the stability of the frequency using phase-locked loop (PLL) circuits at the point of common coupling (PCC), in addition to managing the reactive power supplied to the grid. On the other side, the proposed control system is also based on the instantaneous tracking of the voltage to achieve the voltage control in the standalone mode and retain the stability of the frequency by using another circuit including a special equation (wt = 2πft, f = 50 Hz). This utilization provides the ability to obtain voltage stability across the critical load. One benefit of the proposed control strategy is that the design of the controller remains unconverted for other operating conditions. The simulation results are added to evaluate the performance of the proposed control technology using a different method; the first method used basic proportional integration (PI) controllers, and the second method used adaptive proportional integration (PI) controllers, i.e., an Artificial Neural Network (ANN).


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 947
Author(s):  
Rishi Kondapaneni ◽  
Ashley N. Malcolm ◽  
Brian M. Vazquez ◽  
Eric Zeng ◽  
Tse-Yu Chen ◽  
...  

Florida lies within a subtropical region where the climate allows diverse mosquito species including invasive species to thrive year-round. As of 2021, there are currently 66 state-approved Florida Mosquito Control Districts, which are major stakeholders for Florida public universities engaged in mosquito research. Florida is one of the few states with extensive organized mosquito control programs. The Florida State Government and Florida Mosquito Control Districts have long histories of collaboration with research institutions. During fall 2020, we carried out a survey to collect baseline data on the current control priorities from Florida Mosquito Control Districts relating to (1) priority control species, (2) common adult and larval control methods, and (3) major research questions to address that will improve their control and surveillance programs. The survey data showed that a total of 17 distinct mosquito species were considered to be priority control targets, with many of these species being understudied. The most common control approaches included truck-mounted ultra-low-volume adulticiding and biopesticide-based larviciding. The districts held interest in diverse research questions, with many prioritizing studies on basic science questions to help develop evidence-based control strategies. Our data highlight the fact that mosquito control approaches and priorities differ greatly between districts and provide an important point of comparison for other regions investing in mosquito control, particularly those with similar ecological settings, and great diversity of potential mosquito vectors, such as in Florida. Our findings highlight a need for greater alignment of research priorities between mosquito control and mosquito research. In particular, we note a need to prioritize filling knowledge gaps relating to understudied mosquito species that have been implicated in arbovirus transmission.


2011 ◽  
Vol 268-270 ◽  
pp. 1681-1686
Author(s):  
Chao Yong Tuo

Compared with traditional three-phase motors, six-phase induction motors due to their high reliabilities and low DC side voltages can achieve high power drives using devices with lower voltage level. In this paper, it analyzes the research status of six-phase induction motors, introduces the winding structures of six-phase induction motors, and finally designs the vector control system for six-phase induction motors taking the Digital Signal Processor (DSP) as the core. It introduces DSP circuit implementations, emphasizes to describe software structures of the control system, and proposes a detailed software flow chart.


2013 ◽  
Vol 432 ◽  
pp. 472-477
Author(s):  
Wei Fan ◽  
Tao Chen

This paper presents a robust fuzzy proportional-integral-derivative (PID) controller for brushless DC motor (BLDCM) control system. The hardware circuit of the BLDCM control system is designed and implemented using a digital signal processor (DSP) TMS320LF2407A and a monolithic BLDCM controller MC33035 as the core. Furthermore, a fuzzy PID controller, which combines the advantages of good robustness of fuzzy controller and high precision of conventional PID controller, is employed in the hardware system, thereby yielding a digital, intelligent BLDCM control system. Experimental results have shown that the control system can run steadily and control accurately, and have convincingly demonstrated the usefulness of the proposed fuzzy PID controller in BLDCM control system.


Sign in / Sign up

Export Citation Format

Share Document