The Dynamic Analysis of Self-Anchored Suspension Bridge Based on Ansys

2010 ◽  
Vol 43 ◽  
pp. 594-598
Author(s):  
Bang Sheng Xing ◽  
Changlun Du ◽  
Xue Feng Wang

In this paper Ansys, the difite element analysis software, is used to make model analysis on self-anchored suspension bridges achieve the intrinsic frequency and inherent vibrating mode of its first ten bands. Simutaneously, a transient dynamic analysis is made to research the impact of the deformation of the self-suspension bridge under a moving load with the change of the speed, which will be playing a pivotal role in the design and construction of the self-anchored suspension bridges.

2011 ◽  
Vol 368-373 ◽  
pp. 382-385
Author(s):  
Zhi Hua Chen ◽  
Ren Zhang Yan ◽  
Xiang Yu Yan ◽  
Jing Hai Yu

As the shape of the spatial helical irregular steel sculpture is singularly, this paper studies the structure’s stability and dynamic properties with finite element analysis software in order to determine its ultimate bearing capacity, The structure’s natural vibration characteristics are obtained by modal analysis. The structure’s deformation characteristics within a small time history is also obtained by transient dynamic analysis. Feasibility of the new irregular steel structure is verified by calculation and analysis in this article which can lay the foundation for the development of the irregular steel structure.


2020 ◽  
Vol 319 ◽  
pp. 07002
Author(s):  
Hu Jun

In order to study the influence of rainfall on the critical wind speed of flutter of long-span suspension bridges in mountainous area, the impact of rainfall on stiffening girder is analyzed based on the main characteristics of rainfall and the movement speed in all directions. The mechanical equation under the joint action of wind and rain is established and the impact force is transferred, the damping effect of rainfall is then derived, and the element damping matrix form of rainfall is obtained by combining the integration of shape function. Furthermore, the flutter motion equation of wind-rain-bridge coupling system is derived, and the finite element analysis method for critical wind speed of structural flutter considering the influence of rainfall is established. Finally, taking a large-span suspension bridge in mountainous area as the research object, the influence of rainfall on the critical wind speed of flutter is analyzed, the results indicate that the critical wind speed of flutter will be accordingly increased due to the existence of rainfall damping, whereas the mass of raindrops is too light and the final velocity of raindrops in the falling process is low, the critical wind speed of flutter increased by only 5.54% in the case of heavy rainstorm. Therefore, when the rainfall intensity is general, the influence of rainfall on the critical wind speed of flutter can be ignored.


2018 ◽  
Vol 1 (4) ◽  
pp. 869-876
Author(s):  
Sarwo Edhi ◽  
Muttaqin Hasan ◽  
Husaini Husaini

Abstract : Suspended footbridges has a lot of constructed in Indonesia to access many–especially rural-regions. Due to its flexiblity, understanding and design of the suspension bridge is not enough to rely on static analysis. This paper deal with the dynamic behaviour of simply unstiffening suspended bridges subjected to pedestrian load and motor-cycles moving load.As the SNI 03-3428-1994 codeof the technical planning for pedestrian suspension bridge is not set in consideration of dynamic analysis and design,pedestrian-load model is based on British Standard BS 5400-4: 1990 and Eurocode EN1991-2:2003. Modeling pedestrian load is done in three conditions; single pedestrian, group, and crowd. The motor-cycles moving load is modeled as a moving force model, accurate for low speed. Variations in the speed used was 10 km / h, 20 km / h, 30 km / h are considered representative. Dynamic analysis done by the time history Newmark direct integration method with the help of finite element analysis program SAP2000 v.15. Span 60 m, 80 m and 100 m was studied. As these results, dynamic interaction between the bridges and pedestrian load is not significant.The analyses have shown that the responses greatly differ between the British Standard and Eurocode.However, motor-cycle load has same results but higher  with the largest DAF value 7.27% for speeds of 30 km / h interval of 2 seconds on a span of 100 m. Abstrak: Jembatan gantung pejalan kaki telah banyak sekali dibangun di Indonesia, sebagai pemecah masalah akses antar wilayah. Dikarenakan strukturnya yang fleksible, pemahaman dan desain jembatan gantung tidak cukup sekedar mengandalkan analisis statis. Tujuan penelitian ini adalah untuk memperlihatkan respons dinamis jembatan gantung pejalan kaki sederhana tanpa pengaku. Hal yang akan dipelajari adalah simpangan vertikal dan percepatan ditinjau dari sisi kenyamanan. Beban yang dikenakan adalah beban pejalan kaki dan kendaraan roda dua. Dikarenakan SNI 03-3428-1994 Tata cara perencanaan teknik jembatan gantung untuk pejalan kaki tidak mengatur analisis dinamis dalam pertimbangan analisis dan desain, pemodelan beban pejalan kaki didasarkan pada British Standard BS 5400-4:1990 dan Eurocode EN1990. Pemodelan beban pejalan kaki dilakukan dalam tiga kondisi; pejalan tunggal, pejalan kelompok, dan arus keramaian. Untuk beban kendaraan dimodelkan sebagai beban berjalan yang cukup akurat untuk kecepatan rendah. Variasi kecepatan yang digunakan adalah 10 km/jam, 20 km/jam, 30 km/jam dianggap cukup representatif. Analisis dinamis dilakukan secara riwayat waktu dengan metode integrasi langsung Newmark dengan bantuan program analisa elemen hingga SAP2000 v.15. Bentang yang diteliti adalah 60 m, 80 m dan 100 m. Dari hasil tersebut didapati bahwa percepatan akibat beban pejalan kaki masih kecil sehingga tak berpengaruh secara signfikan. Sedangkan beban sepeda motor juga demikian, dengan nilai DAF terbesar 7,27 % untuk kecepatan 30 km/jam selang 2 detik pada bentang 100 m.


2020 ◽  
Vol 10 (21) ◽  
pp. 7666
Author(s):  
Ngoc-Son Dang ◽  
Gi-Tae Rho ◽  
Chang-Su Shim

Long-span suspension bridges require accumulated design and construction technologies owing to challenging environmental conditions and complex engineering practices. Building information modeling (BIM) is a technique used to federate essential data on engineering knowledge regarding cable-supported bridges. In this study, a BIM-based master digital model that uses a data-driven design for multiple purposes is proposed. Information requirements and common data environments are defined considering international BIM standards. A digital inventory for a suspension bridge is created using individual algorithm-based models, and an alignment-based algorithm is used to systematize them and generate the entire bridge system. After assembling the geometrical model, metadata and various BIM applications are linked to create the federated master model, from which the mechanical model is derived for further stages. During the construction stage, the advantage of this digital model lies in its capability to perform efficient revisions and updates with respect to varying situations during the erection process. Stability analyses of the bridge system can be performed continuously at each erection step while considering the geometric control simulation. Furthermore, finite element analysis models for any individual structural member can be extracted from the master digital model, which is aimed at estimating the actual behavior of bridge members. In addition, a pilot master digital model was generated and applied to an existing suspension bridge; this model exhibited significant potential in terms of bridge data generation and manipulation.


2020 ◽  
Vol 10 (15) ◽  
pp. 5367 ◽  
Author(s):  
Mohamed N. Lotfy ◽  
Yasser A. Khalifa ◽  
Abdelrahim K. Dessouki ◽  
Elsayed Fathallah

The most important problems confronted by designers of floating structures are minimizing weight and increasing payload to get proper resistance to the applied loads. In the present study, the structural performance of a ferry is analyzed using both metallic and composite materials as a result of the dynamic load of the Military Load Capacity (MLC) 70 (tank load). The model is composed of sixteen floating pontoons. Finite element simulation and dynamic analysis were performed using ANSYS software (analysis system software), considering a moving MLC70 (tank load). Both concentric and eccentric cases of loading are considered. Draft, deformation, and stresses are obtained and investigated. For the steel ferry, the von-Mises stresses are investigated, while for the composite ferry, the maximum principal stresses are investigated. Furthermore, buckling analysis is performed on the composite ferry and the buckling load factor is determined. The results of the dynamic analysis illustrated that the transverse eccentricity of the moving tank MLC70 must not exceed 0.5 m for a steel ferry while it may reach up to 1.5 m for the composite ferry. This research can also be a useful tool in the design of floating composite and steel ferries.


PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  
Isabella Zapata ◽  
John Corven ◽  
Seung Jae Lee ◽  
David Garber

This paper presents the results of analytical studies on the connection between piles and pile caps or footings. Two nonlinear finite element analysis software packages were used to investigate the behavior of the connection itself and the impact of connection assumptions on the overall behavior of different sensitive structures such as simple spans with uneven span lengths, segmental box girders with fixed pier tables, and straddle bents with temperature loading. Results show that the behavior of the connection is affected by variables such as pile size, pile embedment length, pile cap concrete strength, interface reinforcement, and distance between the edge of the pile and the edge of the pile cap. The study also demonstrated that significant moment can develop even with shallow pile embedment lengths. The assumed level of fixity between the pile and pile cap was found to significantly influence the behavior of some of the bridges investigated in this study.


2011 ◽  
Vol 58-60 ◽  
pp. 1608-1613
Author(s):  
Gang Huang ◽  
Yuan Ming Long ◽  
Jin Hang Li

Virtual prototype plays an important role in agile designing and manufacturing. Finite Element Analysis and multibody analysis software can also assist engineers with developing and analyzing sophisticated machines. In this paper, a virtual model of an automobile wiper is modeled and used to be simulated under virtual environment of ADAMS, which is a famous tool in mechanical engineering. After simulation, the vibration and noise that the wiper works with have been found and some suggestions are given in discussion and conclusion.


2011 ◽  
Vol 11 (06) ◽  
pp. 1059-1088 ◽  
Author(s):  
KESHAV K. SANGLE ◽  
KAMAL M. BAJORIA ◽  
RAJSHEKAR S. TALICOTTI

This paper presents the finite element buckling and dynamic analyses of two-dimensional (2D) single frames and three-dimensional (3D) frames of cold-formed sections with semirigid connections used in the conventional pallet racking system. The results of buckling analysis for the single 2D frames are compared with those from the experimental study and effective length approach given by RMI. The finite element model used for the single 2D plane frame is further extended to 3D frames with semirigid connections, for which the buckling analysis results are obtained. The buckling and dynamic analyses are carried out using ANSYS for 18 types of developed column sections. The stiffness of the semirigid connection is determined by both the single and double cantilever test methods, along with the nonlinear finite element analysis. Further, an equivalent single degree-of-freedom model is proposed for simulating the seismic behavior of the storage rack in the down-aisle direction, aimed at developing simplified equations for the fundamental period, base shear, and top displacement of the rack. A parametric study is carried out to compute the fundamental period and mode shape. The transient dynamic analysis is also performed for evaluating the impact of the forklift on columns of the frame.


Sign in / Sign up

Export Citation Format

Share Document