Impact of pile-to-cap fixity on the design and behavior of sensitive structures

PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  
Isabella Zapata ◽  
John Corven ◽  
Seung Jae Lee ◽  
David Garber

This paper presents the results of analytical studies on the connection between piles and pile caps or footings. Two nonlinear finite element analysis software packages were used to investigate the behavior of the connection itself and the impact of connection assumptions on the overall behavior of different sensitive structures such as simple spans with uneven span lengths, segmental box girders with fixed pier tables, and straddle bents with temperature loading. Results show that the behavior of the connection is affected by variables such as pile size, pile embedment length, pile cap concrete strength, interface reinforcement, and distance between the edge of the pile and the edge of the pile cap. The study also demonstrated that significant moment can develop even with shallow pile embedment lengths. The assumed level of fixity between the pile and pile cap was found to significantly influence the behavior of some of the bridges investigated in this study.

2013 ◽  
Vol 438-439 ◽  
pp. 690-695
Author(s):  
Xiao Yu ◽  
Na Wu ◽  
Zhao Yang ◽  
Kai Xu

t is focused on a super high-rise building structure, of which the concrete compressive strength is reduced in joint core. The whole structure is calculated with program SATWE. Based on this calculation, integral stress analysis by MIDAS when concrete strength is reduced in joint core area and nonlinear finite element analysis by ANSYS on the joints of the worst cross-sections in the whole structure are developed. Thus the adverse effect of reduced concrete strength in joint core area on super high-rise structures is found out.


2018 ◽  
Author(s):  
Alexander Bowring ◽  
Camille Maumet ◽  
Thomas E. Nichols

AbstractA wealth of analysis tools are available to fMRI researchers in order to extract patterns of task variation and, ultimately, understand cognitive function. However, this ‘methodological plurality’ comes with a drawback. While conceptually similar, two different analysis pipelines applied on the same dataset may not produce the same scientific results. Differences in methods, implementations across software packages, and even operating systems or software versions all contribute to this variability. Consequently, attention in the field has recently been directed to reproducibility and data sharing. Neuroimaging is currently experiencing a surge in initiatives to improve research practices and ensure that all conclusions inferred from an fMRI study are replicable.In this work, our goal is to understand how choice of software package impacts on analysis results. We use publically shared data from three published task fMRI neuroimaging studies, reanalyzing each study using the three main neuroimaging software packages, AFNI, FSL and SPM, using parametric and nonparametric inference. We obtain all information on how to process, analyze, and model each dataset from the publications. We make quantitative and qualitative comparisons between our replications to gauge the scale of variability in our results and assess the fundamental differences between each software package. While qualitatively we find broad similarities between packages, we also discover marked differences, such as Dice similarity coefficients ranging from 0.000 - 0.743 in comparisons of thresholded statistic maps between software. We discuss the challenges involved in trying to reanalyse the published studies, and highlight our own efforts to make this research reproducible.


2016 ◽  
Vol 860 ◽  
pp. 160-165 ◽  
Author(s):  
Zhi Gang Song ◽  
Cheng Fan

In order to study the axial compression performance of GFRP tube composite columns filled with concrete and better applied to engineering, the influence of different winding angle of GFRP tube, thickness of GFRP tube, concrete strength and the containing rate of steel are simulated by using finite element analysis software ABAQUS when the column under the axial compression ,The results show that: the numerical results are in good agreement with the experimental results; reduced GFRP tube winding angle, increasing the GFRP tube thickness, improve the core concrete strength and an increase in steel containing rate could increase the bearing capacity of columns.


1991 ◽  
Vol 113 (4) ◽  
pp. 286-291 ◽  
Author(s):  
J. W. Tedesco ◽  
P. B. McGill ◽  
W. G. McDougal

A finite element analysis is conducted to determine the critical impact velocities for concrete dolos. The model formulation includes deformations at the contact surface and nonlinear material properties. Two dolos orientations are considered: vertical fluke seaward and horizontal fluke seaward. In both cases, the larger units fail at lower angular impact velocities. It is also shown that doubling the concrete strength increases the impact resistance by approximately 40 percent.


2008 ◽  
Vol 35 (12) ◽  
pp. 1399-1413 ◽  
Author(s):  
JungWoong Park ◽  
Daniel Kuchma ◽  
Rafael Souza

In this paper, a strut-and-tie model approach is presented for calculating the strength of reinforced concrete pile caps. The proposed method employs constitutive laws for cracked reinforced concrete and considers strain compatibility. This method is used to calculate the load-carrying capacity of 116 pile caps that have been tested to failure in structural research laboratories. This method is illustrated to provide more accurate estimates of behavior and capacity than the special provisions for slabs and footings of the 1999 American Concrete Institute (ACI) code, the pile cap provisions in the 2002 CRSI design handbook, and the strut-and-tie model provisions in either the 2005 ACI code or the 2004 Canadian Standards Association (CSA) A23.3 standard. The comparison shows that the proposed method consistently well predicts the strengths of pile caps with shear span-to-depth ratios ranging from 0.49 to 1.8 and concrete strengths less than 41 MPa. The proposed approach provides valuable insight into the design and behavior of pile caps.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7380
Author(s):  
Savin Dorin Ionesi ◽  
Luminita Ciobanu ◽  
Catalin Dumitras ◽  
Manuela Avadanei ◽  
Ionut Dulgheriu ◽  
...  

Composite materials reinforced with textile fabrics represent a complex subject. When explaining these materials, one must consider their mechanical behavior in general, and impact resistance in particular, as many applications are characterized by dynamic strains. Impact characteristics must be considered from the early stages of the design process in order to be controlled through structure, layer deposition and direction. Reinforcement materials are essential for the quality and behavior of composites, and textile reinforcements present a large range of advantages. It takes a good understanding of the requirements specific to an application to accurately design textile reinforcements. Currently, simulations of textile reinforcements and composites are efficient tools to forecast their behavior during both processing and use. The paper presents the steps that must be followed for modelling the impact behavior of composite materials, using finite element analysis (FEM). The FEM model built using Deform 3D software offers information concerning the behavior structure during impact. The behavior can be visualized for the structure as a whole and, for different sections, be considered significant. Furthermore, the structure’s strain can be visualized at any moment. In real impact tests, this is not possible due to the very short time interval and the impossibility to record inside the structure, as well as to record all significant stages using conventional means.


Author(s):  
Rodrigo Gustavo Delalibera ◽  
Marco Aurélio Tomaz ◽  
Vitor Freitas Gonçalves ◽  
José Samuel Giongo

abstract: Reinforced concrete pile caps may be designed trough plastic models (strut and tie model) or models based on bending theory. The formulae available for verifying the stress is based on caps supported on concrete piles, with few studies about the stress distribution on caps supported on steel piles. To analyze the structural behavior of caps supported on steel piles, as well as the stress on the superior and inferior nodal zones, four two-pile caps supported on steel piles were tested. The variables were the embedment length and in one of the specimens a steel plate was welded on top of both piles. It was observed that the embedment length has substantial influence on pile cap structural behavior. It was concluded that, to verify the stress on inferior nodal zone of the cap, aside from pile area, an area of concrete confined between the flaps of the pile must be considered.


2019 ◽  
Vol 950 ◽  
pp. 103-109
Author(s):  
Hai Tao Qian ◽  
Shun Shan Feng ◽  
Zhi Yu Shao ◽  
Si Yu Wu

Polyurethane foam has the properties of energy absorption and mitigating the impact, it has been used in internal protection head cap of cylindrical objects as cushion material, its theory and simulation has been widely discussed by the domestic and foreign scholars, but little experimental research is involved. In this paper, a dynamic loading water-entry impact experiment was designed for polyurethane foam plastics with different densities. In addition, ANSYS/LS-DYNA finite element analysis software was used to simulate water-entry process of cushion materials with different densities. The experimental and simulation results show that the 0.18 g/cm3 polyurethane material can effectively protect the cylindrical head, reduce the stress and have a good cushion effect on it.


Sign in / Sign up

Export Citation Format

Share Document