Design of Multifunctional Electric Wheel Test-Bed

2013 ◽  
Vol 437 ◽  
pp. 439-443
Author(s):  
Liang Shao ◽  
Lu Xiong

This paper introduces a multifunctional electric wheel test-bed which focuses on vehicle dynamics (especially for testing the relation between tire force and slip ratio with large cornering force) and durability test of the electric wheel. On the basis of the functional requirements we propose some design specifications, with which mechanical structure and control system design as well as finite element analysis of the test-bed are conducted. The finite element analysis results show that the stress of the whole mechanism especially the critical parts is less than the yield stress limit with enough tolerance, suggesting that the test-bed meets the design specifications.

2017 ◽  
Vol 59 (2) ◽  
pp. 183-187 ◽  
Author(s):  
Dong Lei ◽  
Rui Jiang ◽  
Pengxiang Bai ◽  
Feipeng Zhu

Author(s):  
Muhammad Zubair Muis Alie ◽  
Ganding Sitepu ◽  
Juswan Sade ◽  
Wahyuddin Mustafa ◽  
Andi Mursid Nugraha ◽  
...  

This paper discusses the influence of asymmetrically damaged ships on the ultimate hull girder strength. When such damages take place at the asymmetric location of cross sections, not only translation but also inclination of instantaneous neutral axis takes place during the process of the progressive collapse. To investigate this effect, the Finite Element Analysis (FEA) is employed and the damage is assumed in the middle hold. The collision damage is modeled by removing the plate and stiffener elements at the damage region assuming the complete loss of the capacity at the damage part. For the validation results obtained by Finite Element Analysis of the asymmetrically damaged ship hull girder, the simplified method is adopted. The Finite Element method of ultimate strength analysis of a damaged hull girder can be a practical tool for the ship hull girder after damages, which has become one of the functional requirements in IMO Goal Based Ship Construction Standard.


2017 ◽  
Vol 11 (9) ◽  
pp. 51
Author(s):  
Babak Beglarzadeh ◽  
Behnam Davoodi

The process of cold forming is considered of the most different industries and the use of such process in the manufacture of components and small parts has expanded. Therefore, analyzing the behavior of metals in this process to identify and control durability that is the main factor of limiting process has particular importance in industrial forming processes. In this study, cold forming process of aluminum metal has been studied and its effect on its mechanical properties has been evaluated. For this purpose, first modeling piece of aluminum alloy 5083 for cold forming process is carried out and using finite element analysis, mechanical properties of considered piece during cold forming processes are investigated. The results show that by reducing friction, stress and strain during the process will reduce, thereby durability of the piece increases, or in other words, ductile fracture occurs in longer life and higher stresses. The results show that by proper forming operations, it can be improved the strength and durability of aluminum alloy. Finally, validation of results, by comparing simulation results with experimental results is carried out.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7657
Author(s):  
Wenbo Ma ◽  
Yuyang Li ◽  
Ning Yang ◽  
Li Fan ◽  
Yanli Chen ◽  
...  

In this paper, in order to improve the durability of optical fiber grating hydrogen sensors, an optical fiber grating hydrogen sensor with high precision, stability, and durability is prepared. Based on the simplified two-dimensional model and finite element analysis, the effects of film thickness, coating speed, and coating times on the residual Mises equivalent stress between the sensor film and substrate were studied, and the optimum coating parameters were determined. The finite element analysis results show that the residual equivalent stress between the film and the substrate increases with the increase in the film thickness between 50 and 150 nm. The range of 200–250 nm is relatively stable, and the value is small. The coating speed has almost no effect on the residual equivalent stress. When the thickness of the film is 200 nm, the residual equivalent stress decreases with the increase in coating times, and the equivalent force is the lowest when the film is coated three times. The best coating parameters are the thickness of 200 nm, the speed of 62.5 μm/s, and the times of coating three times. The results of finite element analysis are verified by the hydrogen sensitivity test and durability test.


Author(s):  
Bijan Mohammadi ◽  
Zahra Abdoli ◽  
Ehsan Anbarzadeh

Today, an artificial tooth root called a dental implant is used to replace lost tooth function. Treatment with dental implants is considered an effective and safe method. However, in some cases, the use of dental implants had some failures. The success of dental implants is influenced by several biomechanical factors such as loading type, used material properties, shape and geometry of implants, quality and quantity of bone around implants, surgical method, lack of rapid and proper implant surface's integration with the jaw bone, etc. The main purpose of functional design is to investigate and control the stress distribution on dental implants to optimize their performance. Finite element analysis allows researchers to predict the stress distribution in the bone implant without the risk and cost of implant placement. In this study, the stresses created in the 3A.P.H.5 dental implant's titanium fixture and screw due to the change in abutment angles tolerance have been investigated. The results show that although the fixture and the screw's load and conditions are the same in different cases, the change of the abutment angle and the change in the stress amount also made a difference in the location of maximum stress. The 21-degree abutment puts the fixture in a more critical condition and increases the chance of early plasticization compared to other states. The results also showed that increasing the abutment angle to 24 degrees reduces the stress in the screw, but decreasing the angle to 21 degrees leads to increased screw stress and brings it closer to the fracture.


2012 ◽  
Vol 256-259 ◽  
pp. 714-718
Author(s):  
Jian Cheng Sun ◽  
Zhong Le Zhang ◽  
Qing Yi Xiao

To study the temperature field changing regulation of hydration heat and control concrete cracks caused by great temperature difference in the construction of hollow-thin pier, testing the temperature field of the high and hollow-thin pier of Cha Jiugou Bridge and it got changing regulation of the temperature. The finite element analysis on the pier was also carried out and the temperature stress contours and curves of the hydration heat of the concrete are obtained. It can be seen that the outer surface and the center of the pier are compressive within 10 hours in the pouring early. With the temperature difference, the center generates the compressive stress, the surface generates tensile stress.


Sign in / Sign up

Export Citation Format

Share Document