Stability Analysis and Evaluation of QingXi High-Cutting Slope

2013 ◽  
Vol 438-439 ◽  
pp. 1376-1379
Author(s):  
Jian Ping He ◽  
Ya Li Wang

Rock nature is mainly controlled by joint-fissur, the stability of rock slope is mainly controlled by the joint surface, the destruction of the slope caused wedge instability formed by joint plane cutting. Stereographic projection can analyze simply and intuitively spatial association relations of straight line and plane in geological body, judge high-cutting slope stability and decisive factor of judge stability of high-cutting slope by means of direction and tendency relationship of rock slope and structural plane. This paper uses stereographic projection to analyze and judge high-cutting slope stability formed by artificial mechanical excavation in Qingxi, and decisive factor of stability according to deformation and fracture and the trends in the high-cutting slope regional, puts forward the high-cutting slope control measures and methods to ensure slope stability and security.

2012 ◽  
Vol 594-597 ◽  
pp. 358-361
Author(s):  
Shan Shan Zhang ◽  
Yu Liang Wu

Collapse is one of the major geological disasters all over the world and threats to life and property safety of people. To make a better understanding of the reason it occurs and how to deal with it, the Kim-Yun-Mine collapse is researched. There are one dangerous rock mass and two collapse accumulation body. The basic characteristics of the collapse is described clearly according to the geological exploration data, and the stability of the dangerous rock mass and the collapse accumulated body is analyzed in the way of engineering geology and stereographic projection. At last, we put forward comprehensive control measures based on the results of stability analysis and collapse characteristics.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2615
Author(s):  
Nicola Rossi ◽  
Mario Bačić ◽  
Meho Saša Kovačević ◽  
Lovorka Librić

When constructing flood protection structures such as river levees, oftentimes due to various factors engineers must design composite structures, i.e., reinforced earthen structures which comply with all the stability criteria. The most common way of reinforcing such structures is the usage of geosynthetics, or mostly geogrids when talking about stability. Since geosynthetics are man-made materials produced in a controlled environment and go through quality control measures, their characteristics contain a negligible amount of uncertainty compared to natural soils. However, geosynthetic handling, their installation in the levee, and their long-term degradation can all have significant effects of variable magnitude on geosynthetic characteristics. These effects and their variability can be considered as random variables, which can then be used in probabilistic analyses together with soil properties. To investigate the effects of the geogrid’s resistance variability on slope stability compared to soil properties variability, probabilistic analyses are conducted on a river levee in northern Croatia. It is found that the geogrid’s variability generally has very little effect on the total uncertainty compared to the friction angle’s variability, but out of the three geogrid layers used the top grid has the most influence.


2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Faridha Aprilia ◽  
I Gde Budi Indrawan

The stability of rock slopes is controlled by several factors, such as the intact rock strength, discontinuity characteristics, groundwater condition, and slope geometry. Limit equilibrium (LE) analyses have been commonly used in geotechnical practice to evaluate the stability of rock slopes. A number of methods of LE analyses, ranging from simple to sophisticated methods, have been developed. This paper presents stability analyses of rock slopes at the Batu Hijau open mine in Sumbawa Barat using various methods of LE analyses. The LE analyses were conducted at three cross sections of the northern wall of the open mine using the Bishop Simplified, Janbu Simplified, Janbu Generalised, and General Limit Equilibrium (GLE) methods in Slide slope stability package. In addition, a Plane Failure (PF) analysis was performed manually. Shear strength data of the discontinuity planes used in the LE analyses were obtained from back analyses of previous rock slope failures. The LE analysis results showed that the rock slopes were likely to have shallow non-circular critical failure surfaces. The factor of safety (Fs) values obtained from the Bishop Simplified, Janbu Simplified, Janbu Generalised, and GLE methods were found to be similar, while the Fs values obtained from the PF method were higher than those obtained from the more rigorous methods. Keywords: Batu Hijau mine, Bishop Simplified, Janbu Simplified, Janbu Generalised, limit equilibrium analyses, general limit equilibrium, rock slope stability, plane failure.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
K. Ma ◽  
N. W. Xu ◽  
Z. Z. Liang

A high-resolution microseismic (MS) monitoring system was implemented at the right bank slope of the Dagangshan hydropower station in May 2010 to analyse the slope stability subjected to continuous excavation. The MS monitoring system could real-time capture a large number of seismic events occurring inside the rock slope. The identification and delineation of rock mass damage subject to excavation and consolidation grouting can be conducted based on the analysis of tempospatial distribution of MS events. However, how to qualitatively evaluate the stability of the rock slope by utilizing these MS data remains challenging. A damage model based on MS data was proposed to analyse the rock mass damage, and a 3D finite element method model of the rock slope was also established. The deteriorated mechanical parameters of rock mass were determined according to the model elements considering the effect of MS damage. With this method, we can explore the effect of MS activities, which are caused by rock mass damage subjected to excavation and strength degradation to the dynamic instability of the slope. When the MS damage effect was taken into account, the safety factor of the rock slope was reduced by 0.18 compared to the original rock slope model without considering the effect. The simulated results show that MS activities, which are subjected to excavation unloading, have only a limited effect on the stability of the right bank slope. The proposed method is proven to be a better approach for the dynamical assessment of rock slope stability and will provide valuable references for other similar rock slopes.


2011 ◽  
Vol 243-249 ◽  
pp. 2254-2258 ◽  
Author(s):  
Wen Zhong ◽  
Zhuo Ying Tan ◽  
Lan Qiao

Aimed at stability of rock slope, the attitude of structural plane is statistically analyzed with a combined method of rose diagram and pole equidensite diagram, and the preferred structural planes which are dominant in stability of slope were further determined by a lot of factors such as the terrain and topographical features of slope, the lithologic characters and the development of structural plane. Besides, the stereographic projection method is applied to qualitative analysis for the stability of rock slope. The results show that preferred structural plane can effectively reveal the nature of rock slope stability and provide a dimensional discriminant approach for stability of rock mass slope.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hongliang Tao ◽  
Guangli Xu ◽  
Jingwen Meng ◽  
Ronghe Ma ◽  
Jiaxing Dong

The stability of high rock slopes has become a key engineering geological problem in the construction of important projects in mountainous areas. The original slope stability probability classification (SSPC) system, presented by Hack, has made obvious progress and been widely used in rock slope stability analysis. However, the selection and determination of some evaluation indexes in the original SSPC method are usually subjective, such as intact rock strength and weathering degree. In this study, the SSPC method based on geological data obtained in the prospecting tunnels was presented and applied. According to the field survey and exploration of the prospecting tunnels, the weathering degree of the slope rock mass was evaluated. The empirical equation for the maximum stable height of the slope was applied to the slope stability evaluation in the presented SSPC method. Then, the slope stability probability of numerous cutting slopes in the sandstone unit was evaluated using the presented system. Results of the Geostudio software based on the limited equilibrium analysis of the investigated slopes were compared with the results obtained by the SSPC method. The results indicate that the SSPC method is a useful tool for the stability prediction of high and steep rock slopes.


2013 ◽  
Vol 868 ◽  
pp. 391-394
Author(s):  
Bao Yong Liu ◽  
Di Yang

According to the actual progress of a certain Surface Mine and based on strength reduction method, the deformation and fracture processes of the high dip bedded soft rock slope was simulated with RFPA-SRM, the stability of the slope was calculated. By analyzing the numerical simulation results, the characters of the deformation of high dip bedded soft rock slope and the landslide mode were demonstrated, which could provide a scientific basis for reasonable landslide control measures.


2012 ◽  
Vol 446-449 ◽  
pp. 1963-1966
Author(s):  
Shu Qiang Lu ◽  
Mo Xu

The rock mass structure of granite is massive, so the stability of granite slope is good. Massive rock become stratoid structure when the rock mass contain discontinuities such as joints and faults. The deformation and destruction of the slope rock mass is controlled by the behaviour and orientation of the discontinuities. Especially, the over-dip discontinuities controlled the slope stability. In this paper, based on the abundant field investigation on the slope in left bank diversion tunnel inlets of Nuozadu power station in Lancang River, the types of rock mass structures and the combination between structural planes and slope surface are studied in detail so as to analyze the slope deformation mechanism. Finally, the slope stability is researched systematically by limit equilibrium method and FLAC numerical simulation analysis. A set of technical and methodological system on stability research of over-dip stratoid structure rock slope will hoped to be established.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Aijun Yao ◽  
Jian Lu ◽  
Zhizhou Tian ◽  
Yanyan Li

Slope stability has been a key issue in the field of geotechnical engineering. Determining the potential sliding surface of a slope is an important link in evaluating the stability of the slope. For rock slope with embedded structural plane, the potential sliding surface is greatly affected by the embedded structural plane. When determining the potential sliding surface, the influence of the position of the embedded structural plane should be considered. According to the distribution characteristics of the embedded structural plane of the rock slope, the structural plane in rock slope is divided into two types: (1) front embedded and (2) rear embedded structural plane. Considering the influence of two types of structural planes, a search method for potential sliding surfaces of rock slope is proposed combined with the finite random tracking method. The location of the sliding surface is controlled through the cut-in point, cut-out point, and arc height so that the range of search variables does not need empirical assumption. An engineering example is used to verify the search method. The results show that the method could accurately obtain the potential sliding surface of the rock slope with embedded structural plane, which proves the effectiveness of the search method.


2014 ◽  
Vol 638-640 ◽  
pp. 542-548
Author(s):  
Yuan Liang Liu ◽  
Xiao Feng Xie

For the abandoned quarry complex rock slope project, the slope stability calculation is always the key technical problem, but due to the complex geological conditions and other factors, it makes the calculation of 3D modeling and the stability of the slope geological body and structure of the division, rock unit has always been the difficult problems in the field. This paper proposes a new method based on the rock mass structure combined with the degree of rock mass element, and then FLAC 3D, Midas GTS three-dimensional numerical calculation software are used, structure and surface topography in the slope, the slope surface fault, soft interlayer, complex geological 3D modeling, overcomes the problem of modeling of complex geological body, and the factors of rainfall, earthquake effect of the slope are consider for stability calculation, the calculation result is consistent with the reality, it has certain directive significance to the abandoned quarry re-greening slope stability analysis.


Sign in / Sign up

Export Citation Format

Share Document