Machining Error Analysis and its Compensation Using Fuzzy Inference in Crankshaft Non-Circular Grinding

2010 ◽  
Vol 44-47 ◽  
pp. 1084-1089 ◽  
Author(s):  
Nan Yan Shen ◽  
Ming Lun Fang ◽  
Jing Li ◽  
Yong Yi He

The error sources, including technological system, numerical control system and motion control model, generate a machining error in the radial direction of the crankpin which varies with the rotating angle of the crankshaft journal in crankpin non-circular grinding. This machining error can be reduced in advance through giving the additional impulses as the displacement correction of grinding carriage to numerical control system. However due to the strong nonlinearity of non-circular grinding system, the machining error of crankpin is difficult to be described precisely by a certain mathematic model. In this paper, a compensation method is proposed, which utilizes the measured error after the last grinding circle and the change of error to find the initial compensation value in the next grinding circle by fuzzy reasoning. To increase the self-learning ability of this method, the final compensation value in the next circle is composed of the initial value and the final value in the last circle. The grinding experiments results show that the roundness error can be reduced into the expectation in only a few grinding circles by this method, which demonstrates its high efficiency and applicability.

2014 ◽  
Vol 945-949 ◽  
pp. 2266-2271
Author(s):  
Li Hua Wang ◽  
Xiao Qiang Wu

In space laser communication tracking turntable work environment characteristics, we design a neural network PID control system which makes the system’s parameter self-tuning. The control system cans self-tune parameters under the changes of the object’ mathematic model, it solves the problem for the control object’s model changes under the space environment. It also looks for method for optimum control through the function of neural network's self-learning in order to solve the problem of the precision’s decline which arouse from vibration and disturbance. The simulation experiments confirmed the self-learning ability of neural network, and described the neural PID controller dynamic performance is superior to the classical PID controller through the output characteristic curves contrast.


2012 ◽  
Vol 490-495 ◽  
pp. 456-459
Author(s):  
Jun Han ◽  
Rui Li Chang

Open Computer Numerical Control system (Open CNC) based on PC and the Windows operating system has been a major developing direction and a research focus of the current numerical control technology. At present, there have been all kinds of the Open CNC systems with high-speed and precision servo control boards, but they are too expensive. Therefore, developing an economical and practical motion controller is great significant for middle and small numerical control system


2013 ◽  
Vol 850-851 ◽  
pp. 657-660
Author(s):  
Jin Wei Tu ◽  
Cheng Zhong Huang

Technology macro-program application in numerical control is the secondary development tool which numerical control system manufacturers supported to the customers. It is the highest manual approach of numerically controlled lathe programming. This article introduces the programming process of macro-program parabola machining. Through practicing and researching the key functionality of the macro-program parabola machining, we can effective and reasonable master this ability and greatly increase the working ability of numerical control lathe.


Author(s):  
Shenping Xiao ◽  
Zhouquan Ou ◽  
Junming Peng ◽  
Yang Zhang ◽  
Xiaohu Zhang ◽  
...  

Based on a single-phase photovoltaic grid-connected inverter, a control strategy combining traditional proportional–integral–derivative (PID) control and a dynamic optimal control algorithm with a fuzzy neural network was proposed to improve the dynamic characteristics of grid-connected inverter systems effectively. A fuzzy inference rule was established after analyzing the proportional, integral, and differential coefficients of the PID controller. A fuzzy neural network was applied to adjust the parameters of the PID controller automatically. Accordingly, the proposed dynamic optimization algorithm was deduced in theory. The simulation and experimental results showed that the method was effective in making the system more robust to external disruption owing to its excellent steady-state adaptivity and self-learning ability.


2012 ◽  
Vol 163 ◽  
pp. 138-142
Author(s):  
Feng Qin Ding ◽  
Yi Yu ◽  
Zhi Yi Miao

General CNC milling machine for special transformation in the middle and low numerical control system of internal control software does not change under the premise of achieving the original system does not have the linear movement and rotary movement of the operating linkage function. The numerical control system of linear movement into rotary movement of the operation, and expansion of two straight line linkage CNC system functions, cleverly converted to a straight line movement control of a rotary movement of the linkage, thereby achieving the surface of the cylinder rotating cam track surface CNC machining. CNC Milling through the difficult parts of the application examples to explain the design principles of transformation CNC milling machine, design approach,As well as the design parameters in the programming of data conversion. And data conversion processing errors resulting from the measures and the elimination of error analysis.


2012 ◽  
Vol 241-244 ◽  
pp. 1482-1486
Author(s):  
Jian Wen Zhao ◽  
Wei Xie

This paper mainly focuses on designing an open CNC system. At first, the advantages and disadvantages of the three popular open numerical control technologies were discussed, and on the basis of demands analysis, this paper chose motion controller plus PC as the whole system model. Then, according to the system model, this article designed the hardware system for the control system, including choosing multi-axis motion control card, servo motors and their drivers. Thirdly, based on the features of this open numerical control system, the paper designed and put the software into three levels, namely low level of control software, mid-level of communication software, and high-level of management software respectively. Finally, in order to test the control performance of this open numerical control system, some experiments were carried out on a two-dimension motion platform, the results are satisfactory and error analysis on these experiments is also given out.


2012 ◽  
Vol 488-489 ◽  
pp. 1697-1701
Author(s):  
Rui Wu ◽  
Yuan Kui Xu

With the continuous progress of science and technology, manufacturing has been a huge space for development. Nowadays numerical control system is widely used in manufacturing. Numerical control system is actually manufacturing control system. By actual information required, with decoded by computer, after information processing It will the process control operations of machine tools to process out the right components. With more complexity of manufacturing, we have higher requirements to pretreatment data of numerical control system. This paper will focus on numerical control algorithm and hardware system to study.


Sign in / Sign up

Export Citation Format

Share Document