Numeration Simulation of Solid-Liquid Two-Phase Flow in Centrifugal Sewerage Pump

2010 ◽  
Vol 44-47 ◽  
pp. 345-348 ◽  
Author(s):  
Jian Hua Liu ◽  
Ming Yi Zhu

By Means of Fluent 6.3,the paper simulated the solid-liquid two-phase flow to a centrifugal sewerage pump,using Eulerian Mixture Model under different working condition and different particle size. The simulation draws some conclusion on distributive rules of solid particle inside impeller passage. The results for this simulation were as following: Distributive rules of solid particle inside impeller passage mainly relate to particle size. Meanwhile,the volume fraction of particles and operation condition have influence on distributive rules of solid particle. The simulated results can explain commendably that attrition took place inside pump passage when pump transported solid-liquid two-phase flow. Meanwhile,the simulated results have reference price to improve the design for pump and performance of pump.

2009 ◽  
Vol 6 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Guomei Li ◽  
Yueshe Wang ◽  
Renyang He ◽  
Xuewen Cao ◽  
Changzhi Lin ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Benliang Xu ◽  
Zuchao Zhu ◽  
Zhe Lin ◽  
Dongrui Wang ◽  
Guangfei Ma

Purpose The purpose of this paper is to analyze the mechanism of particle erosion in butterfly valve pipelines under hydraulic transportation conditions. The results will affect the sealing and safety of butterfly valve pipelines and hopefully serve as reference for the anti-erosion design of butterfly valve pipelines. Design/methodology/approach Through the discrete element method (DEM) simulation that considers the force between particles, the detached eddy simulation (DES) turbulence model based on realizable k-epsilon is used to simulate the solid-liquid two-phase flow-induced erosion condition when the butterfly valve is fully opened. The simulation is verified by building an experimental system correctness. The solid-liquid two-phase flow characteristics, particle distribution and erosion characteristics of the butterfly valve pipeline under transportation conditions are studied. Findings The addition of particles may enhance the high-speed area behind the valve. It first increases and then decreases with increasing particle size. With increasing particle size, the low-velocity particles change from being uniformly distributed in flow channel to first gathering in the front of the valve and, then, to gathering in lower part of it. Fluid stagnation at the left arc-shaped flange leads to the appearance of two high-speed belts in the channel. With increasing fluid velocity, high-speed belts gradually cover the entire valve surface by focusing on the upper and lower ends, resulting in the overall aggravation of erosion. Originality/value Considering the complexity of solid-liquid two-phase flow, this is the first time that the DEM method with added inter-particle forces and the DES turbulence model based on realizable k-epsilon has been used to study the flow characteristics and erosion mechanism of butterfly valves under fully open transportation conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanping Wang ◽  
Bozhou Chen ◽  
Ye Zhou ◽  
Jianfeng Ma ◽  
Xinglin Zhang ◽  
...  

To study the effect of fine particle size and volume concentration on the performance of solid-liquid two-phase centrifugal pump, the mixture multiphase flow model, RNG k-ε turbulence model, and SIMPLEC algorithm were used to simulate the two-phase flow of the centrifugal pump. The effects of particle size and volume concentration on internal pressure distribution, solid volume distribution, and external characteristics were analyzed. The results show that under the design discharge conditions, with the increase of particle size and volume concentration, the internal pressure of the flow field will decrease, and the volume fraction of solid phase in the impeller passage will also decrease as a whole. The solid particles gradually migrate from the suction surface to the pressure surface, and the particles in the volute channel are mainly concentrated in the flow channel near the outlet side of the volute. With the increase of particle size and volume concentration, the negative pressure value at the inlet of centrifugal pump increases, the total pressure difference at the inlet and outlet decreases, and the head and efficiency decrease accordingly.


2010 ◽  
Vol 29-32 ◽  
pp. 1663-1667 ◽  
Author(s):  
Zhi Jian Wang ◽  
Xiao Feng Shang

Coaxial powder delivery nozzle plays an important role in metal part direct and rapid prototyping technology and the reasonable structure can ensure uniform and stable flow of metal powder. Gas-solid two-phase flow theory is considered to simulate outside flow field of carrying gas-type coaxial powder delivery nozzle. The physical and mathematical models are erected. FLUENT software is used to simulate the velocity distribution of gas and solid particle, the volume fraction distribution of particle and the focusing properties. The simulative results indicate that both the structure of coaxial powder delivery nozzle and inlet velocity affect the convergence of powder. When the metal powder is only driven by the carrying gas without the shield gas flow, the powder appears focusing and the focus is 8mm far from the nozzle exit, but the volume fraction at the focus is only 2.6 percent, which shows the convergence of powder is not good and the usage rate is not high. In the optimized structure the simulative results show that the powder flow is affected by the flow of shield gas. When the velocity of shield gas is 6m/s, the powder shows good convergence and the volume fraction of powder at the focus reaches 3.3 percent. The higher the velocity of shield gas is, the more uniformly the powder flows, but the volume fraction at the focus is slightly lower. It is obvious that the numerical simulation will benefit for coaxial nozzle designing and performance improving.


2022 ◽  
Vol 10 (1) ◽  
pp. 57
Author(s):  
Lei Jiang ◽  
Ling Bai ◽  
Peng Xue ◽  
Guangjie Peng ◽  
Ling Zhou

The slurry pump is one of the most important pieces of equipment in mineral transportation and separation systems, and it has complex two-phase flow characteristics and wear mechanisms. By employing numerical and experimental methods, the solid–liquid two-phase flow characteristics and wear patterns were investigated in this study. A two-way coupling discrete phase model (DPM) method was used to predict the flow pattern and the wear location and shows good agreement with the experimental observations. The pump performance characteristics of numerical results under pure water conditions were consistent with the experimental results. The effects of particle parameters and operating conditions on the internal flow field and wear were compared and discussed. The results show that the wear degree increased with the increase in volume flow rate and solid volume fraction. With the increase in particle size, the wear range at the impeller inlet became significantly smaller, but the wear degree became obviously larger. This study provides a basis for reducing the wear and improving the hydraulic performance of slurry pumps.


2011 ◽  
Vol 130-134 ◽  
pp. 3640-3643
Author(s):  
Ding Feng ◽  
Si Huang ◽  
Li Luo ◽  
Wei Guo Ma

This paper presents a performance analysis of a solid-liquid hydrocyclone using Ansys-CFX software. Based on the simulation, the influence of particle volume fraction of feed flow, mean diameter of particles and viscosity of liquid phase on the two-phase flow and separating performance has been investigated for optimizing design.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5697
Author(s):  
Chang Sun ◽  
Shihong Yue ◽  
Qi Li ◽  
Huaxiang Wang

Component fraction (CF) is one of the most important parameters in multiple-phase flow. Due to the complexity of the solid–liquid two-phase flow, the CF estimation remains unsolved both in scientific research and industrial application for a long time. Electrical resistance tomography (ERT) is an advanced type of conductivity detection technique due to its low-cost, fast-response, non-invasive, and non-radiation characteristics. However, when the existing ERT method is used to measure the CF value in solid–liquid two-phase flow in dredging engineering, there are at least three problems: (1) the dependence of reference distribution whose CF value is zero; (2) the size of the detected objects may be too small to be found by ERT; and (3) there is no efficient way to estimate the effect of artifacts in ERT. In this paper, we proposed a method based on the clustering technique, where a fast-fuzzy clustering algorithm is used to partition the ERT image to three clusters that respond to liquid, solid phases, and their mixtures and artifacts, respectively. The clustering algorithm does not need any reference distribution in the CF estimation. In the case of small solid objects or artifacts, the CF value remains effectively computed by prior information. To validate the new method, a group of typical CF estimations in dredging engineering were implemented. Results show that the new method can effectively overcome the limitations of the existing method, and can provide a practical and more accurate way for CF estimation.


Sign in / Sign up

Export Citation Format

Share Document