Study of Air-Fuel Ratio Analyzer Based on CAN Bus

2010 ◽  
Vol 44-47 ◽  
pp. 946-950
Author(s):  
Wei Bin Wu ◽  
Tian Sheng Hong ◽  
Jin Xing Guo ◽  
Xian Mao Liu ◽  
Xie Ming Guo ◽  
...  

Air-Fuel Radio (AFR) analyzer technology is basically mastered by monopolies of developed country nowadays. Due to the lack of development in China, it has a strong practical value to study the accurate, rapid response and portable air-fuel ratio analyzer. This article is based on the AFR calculation model microcomputer hardware and software system design, background monitoring software design and debugging and measurement system, and on the choice of universal oxygen sensor calibration laboratory, establishing a wide-range of oxygen sensor output voltage and AFR model. The main features of AFR analyzer are measurement and display of air-fuel ratio, excess air coefficient or oxygen content, via RS232 communication with host computer or via Control Area Network (CAN) bus and vehicle ECU communication function. Test results showed that the error can be controlled at ± 0.03 λ range when comparing the Analyzer measurement values to calculated values. Compared with American Innovate company LM-2 air-fuel ratio analyser, the maximum relative error measured is ±0.08 when exhaust flood or too dilute, the average measurement error is ±0.04 while λ is between 0.8 and 1.3.

2020 ◽  
Vol 12 (7) ◽  
pp. 119
Author(s):  
Vita Santa Barletta ◽  
Danilo Caivano ◽  
Antonella Nannavecchia ◽  
Michele Scalera

The diffusion of embedded and portable communication devices on modern vehicles entails new security risks since in-vehicle communication protocols are still insecure and vulnerable to attacks. Increasing interest is being given to the implementation of automotive cybersecurity systems. In this work we propose an efficient and high-performing intrusion detection system based on an unsupervised Kohonen Self-Organizing Map (SOM) network, to identify attack messages sent on a Controller Area Network (CAN) bus. The SOM network found a wide range of applications in intrusion detection because of its features of high detection rate, short training time, and high versatility. We propose to extend the SOM network to intrusion detection on in-vehicle CAN buses. Many hybrid approaches were proposed to combine the SOM network with other clustering methods, such as the k-means algorithm, in order to improve the accuracy of the model. We introduced a novel distance-based procedure to integrate the SOM network with the K-means algorithm and compared it with the traditional procedure. The models were tested on a car hacking dataset concerning traffic data messages sent on a CAN bus, characterized by a large volume of traffic with a low number of features and highly imbalanced data distribution. The experimentation showed that the proposed method greatly improved detection accuracy over the traditional approach.


Author(s):  
Shu Liu ◽  
Kevin Koch ◽  
Zimu Zhou ◽  
Simon Föll ◽  
Xiaoxi He ◽  
...  

An empathetic car that is capable of reading the driver's emotions has been envisioned by many car manufacturers. Emotion inference enables in-vehicle applications to improve driver comfort, well-being, and safety. Available emotion inference approaches use physiological, facial, and speech-related data to infer emotions during driving trips. However, existing solutions have two major limitations: Relying on sensors that are not built into the vehicle restricts emotion inference to those people leveraging corresponding devices (e.g., smartwatches). Relying on modalities such as facial expressions and speech raises privacy concerns. By contrast, researchers in mobile health have been able to infer affective states (e.g., emotions) based on behavioral and contextual patterns decoded in available sensor streams, e.g., obtained by smartphones. We transfer this rationale to an in-vehicle setting by analyzing the feasibility of inferring driver emotions by passively interpreting the data streams of the control area network (CAN-bus) and the traffic context (inferred from the front-view camera). Therefore, our approach does not rely on particularly privacy-sensitive data streams such as the driver facial video or driver speech, but is built based on existing CAN-bus data and traffic information, which is available in current high-end or future vehicles. To assess our approach, we conducted a four-month field study on public roads covering a variety of uncontrolled daily driving activities. Hence, our results were generated beyond the confines of a laboratory environment. Ultimately, our proposed approach can accurately recognise drivers' emotions and achieve comparable performance as the medical-grade physiological sensor-based state-of-the-art baseline method.


2014 ◽  
Vol 1049-1050 ◽  
pp. 1163-1166
Author(s):  
Bo Chang ◽  
Xin Rong Zhang ◽  
Li Hong Li

In order to accurately collect the environmental parameters (such as temperature, humidity, illumination, etc.), which influence growth of greenhouse crops, the paper proposed a design for greenhouse environment monitoring based on CAN bus and wireless sensor networks (WSNs). The communication network of the system consists of two parts: the backbone network being constructed by CAN bus and area network being constructed by WSNs. At the same time, the designed of hardware and software about the system is illustrated in detail. System architecture indicates that the system is an effective solution for greenhouse environment monitoring.


Energy ◽  
2019 ◽  
Vol 169 ◽  
pp. 1202-1213 ◽  
Author(s):  
Banglin Deng ◽  
Qing Li ◽  
Yangyang Chen ◽  
Meng Li ◽  
Aodong Liu ◽  
...  

2012 ◽  
Vol 591-593 ◽  
pp. 1579-1584
Author(s):  
Jyh Wei Chen ◽  
Huan Fu Lin

A grid-connected parallel inverter with interleaved phase shift is proposed in this paper. The synchronous are generated by the master module to achieve interleaving phase shift PWM for the parallel inverters connected to grid-tied system that make the inverter to output current to the power line and share the load. TI TMS320F2812 DSP is used for system feedback control with voltage and current by using A/D converters to generate the output current close to sine wave. The expected output current values are determined by the master module and transmitted via CAN (Control area network) between inverter modules. The grid-tied system uses zero-voltage-detection circuit to synchronize the inverter currents with grid voltage. For each switching period, PWM voltage of two inverters are interleaved to reduce the total output current ripple so that the switching frequency can be reduced and the power system EMI problem can be alleviated as well. The experiment results are provided to verify the performance of the proposed system to reduce output current harmonic distortion.


1999 ◽  
Author(s):  
Youngkyo Chung ◽  
Choongsik Bae ◽  
Sangmin Choi ◽  
Kumjung Yoon

Author(s):  
Y Chung ◽  
H Kim ◽  
S Choi ◽  
C Bae

Misfiring in spark ignition engines should be avoided, otherwise unburned fuel and oxygen are brought into the catalyst, and subsequent combustion greatly increases the temperature, possibly resulting in immediate damage to the catalyst. As a new concept of misfire detection method, the signal fluctuation of a wide-range oxygen sensor has been introduced to monitor the fluctuation of the oxygen concentration at the exhaust manifold confluence point. The current research aims to develop a tool that is capable of predicting the variation in oxygen concentration at the exhaust manifold confluence point, and to investigate the flow characteristics of the misfired gas in the exhaust manifold under misfiring conditions in a cylinder. The oxygen concentration at the confluence point could be predicted by comparing the gas flowrate from the misfiring cylinder with the total exhaust gas flowrate. The gas flowrates from each of the cylinders were calculated using a one-dimensional engine cycle simulation including a gas dynamic model of the intake and exhaust systems. The variation in oxygen concentration was also determined experimentally using a fast-response hydrocarbon analyser. The trend of the oxygen concentration fluctuation calculated by the analytical model was compared with the experimental results. The analytical model could duplicate the measured trend of the fluctuation of oxygen concentration at the confluence point, which was characterized by twin peaks for one misfiring. The twin peaks are mainly caused by the mixing of the misfired gas with the burned gas from normally operating cylinders. The effects of engine load and speed on the characteristics of the variation in oxygen concentration were also investigated analytically and experimentally.


Sign in / Sign up

Export Citation Format

Share Document