Research on Dynamic Response of Pavement under Moving Vehicle Loading Using Three Dimensional Finite Element Method

2013 ◽  
Vol 444-445 ◽  
pp. 1197-1203 ◽  
Author(s):  
You Xuan Zhao ◽  
Yan Jun Qiu ◽  
Peng Cao ◽  
Chang Fa Ai

To analyze the dynamic response of the pavement structure under moving vehicle loading is always a hot point in pavement engineering. In this paper, the moving vehicle has been simplified as spring-dashpot components and the pavement structure has also been discrete using three-dimension finite element model. Based on Newton iteration and central difference integration algorithm, the static and dynamic coupling reactions between pavement structure and vehicle have also been considered using finite element platform ABAQUS. The numerical results and analytic results can fit very well in static analysis, meanwhile the numerical results and experiment results can fit very well in dynamic analysis. Based on preceding verified numerical model, a few interesting phenomenon have been discovered. The pavement dynamic vertical displacement in upper layer is much higher than the situation in static analysis, because the vertical displacement is superimposed during the dynamic response analysis. Furthermore the vertical fluctuation of the vehicle's bar center exists even the vehicle moving in the initial even pavement, and the inertial forces is the most important reason to induce this behavior. In the last, this paper has proposed a more accurate, fast and concrete evidence to explain the reason that the dynamic response has obvious relationship with the diseases in pavement layer.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Peng Cao ◽  
Changjun Zhou ◽  
Decheng Feng ◽  
Youxuan Zhao ◽  
Baoshan Huang

Currently dynamic response of the pavement structure is widely studied in pavement engineering. A 3D direct vehicle-pavement coupling dynamic model was developed to describe the pavement dynamic responses in this paper. The moving vehicle was simplified as spring-dashpot components, and the pavement structure was simulated using three-dimension finite element model. Based on Newton iteration and central difference integration algorithm, the static and dynamic coupling reactions between the pavement structure and vehicle were considered using finite element platform ABAQUS. The numerical results fit analytic results very well in static analysis and fit experiment results in dynamic analysis well too. The simulated results indicate that the dynamic pavement surface deflection is much higher than the situation in static analysis, due to the overlapping effect. This phenomenon enhances when vehicle speed increases. A discontinuous zone of shear stress was observed on the base surface between the location under moving load and the location the moving load just passed. It was also found that the vertical fluctuation exists on the vehicle even if there is no roughness on the pavement surface. In general, the developed 3-D direct vehicle-pavement coupling dynamic model was validated to be effective on evaluating pavement dynamic responses.


2015 ◽  
Vol 37 (2) ◽  
pp. 105-122
Author(s):  
Nguyen Thai Chung ◽  
Do Ngoc Tien

Dynamic response analysis of tunnel with elastic foundation subjected to the load such as the hydrostatic pressure, seismic or moving load is an important but complicate problem in transport engineering due to increasing of traffic volume. This paper is devoted to study dynamic response of a tunnel surrounded by elastic foundation under moving vehicle loads by using the finite element method (FEM). The numerical results were then validated by an experimentation on a real structure.


2018 ◽  
Vol 192 ◽  
pp. 02002 ◽  
Author(s):  
Yanuar Haryanto ◽  
Buntara Sthenly Gan ◽  
Nanang Gunawan Wariyatno ◽  
Eva Wahyu Indriyati

We evaluated the performance of a high-rise residential building model in Purwokerto, Indonesia due to the seismic load. The evaluation was performed based on seismic loads given in the 2002 and 2012 Indonesian National Standard (SNI) using linear static analysis, dynamic response analysis and pushover analysis. Based on the linear static analysis, the drift ratio decreased by an average of 34.42 and 32.61% for the X and Y directions respectively. Meanwhile, based on the dynamic response analysis, the drift ratio also decreased by an average of 30.74 and 27.33% for the X and Y directions respectively. In addition, the pushover analysis indicates that the performance of this high-rise residential building model is still at Immediate Occupancy (IO) level. The post-earthquake damage state in which the building remains safe to occupy, essentially retaining the pre-earthquake design strength and stiffness of the structure. The risk of life-threatening injury as a result of structural damage is very low. Although some minor structural repairs may be appropriate, these would generally not be required prior to re-occupancy.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.


2014 ◽  
Vol 1061-1062 ◽  
pp. 767-770
Author(s):  
Fan Lei ◽  
Yu Lin Deng ◽  
Xiao Hua Zhao

It’s important to study the vibration characteristic of submarine pipelines under current for reducing the harmful vibration. Research on fluid-structure interaction of submarine pipeline under current was presented. The pressure and velocity distribution of flow field around pipe with different velocity of flow were studied by ANSYS finite element software. The results show that the pipe is under the action of drag force along the direction of flow. The drag force increases with the flow velocity.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yinhui Wang ◽  
Yidong Xu ◽  
Zheng Luo ◽  
Haijun Wu ◽  
Liangliang Yan

According to the flexural and torsional characteristics of curved thin-walled box girder with the effect of initial curvature, 7 basic displacements of curved box girder are determined. And then the strain-displacement calculation correlations were established. Under the curvilinear coordinate system, a three-noded curved girder finite element which has 7 degrees of freedom per node for the vibration characteristic and dynamic response analysis of curved box girder is constructed. The shape functions are used as the interpolation functions of variable curvature and variable height to accommodate to the variation of curvature and section height. A MATLAB numerical analysis program has been implemented.


Sign in / Sign up

Export Citation Format

Share Document