Analysis of PCB via for Signal Integrity Using ANOVA

2013 ◽  
Vol 446-447 ◽  
pp. 956-960
Author(s):  
Shi Lei Zhou ◽  
Ya Lin Guan ◽  
Xin Kun Tang

This paper based on ANOVA (ANalysis Of VAriance) presents an investigation in the design of signal via in multilayered printed circuit boards (PCB) technology from a signal integrity point of view. Using the concept of the orthogonal array (OA), different vias physical aspect ratios have been set in the analysis. The impacts of these parameters are investigated with the help for a full-wave electromagnetic simulation soft HFSS. This study demonstrates the factors which is the most influence on the signal integrity.

2020 ◽  
Vol 10 (15) ◽  
pp. 5197
Author(s):  
Sufyan A. Azam ◽  
Alex Fragoso

Printed circuit boards constitute the basis of most electronic devices and are mainly fabricated of thin copper films bounded to fiber epoxy laminates, such as FR4. Vibrational stress can induce device failure, and hence, studies addressing their modal properties have important applications. In this paper, cantilever samples made of bare copper bounded to FR4 have been studied to analyze, for the first time, the vibration behavior of specimens with different aspect ratios, with and without central holes of different diameters. Natural frequencies and damping ratios were determined experimentally and analytically using a finite element method for four groups of samples with a very good correspondence between both methods. The fundamental resonance frequency of all the specimens was found to be less than 40 Hz and the influence of a central hole was not significant to affect the modal properties.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 299 ◽  
Author(s):  
Myunghoi Kim

An analytical model for metamaterial differential transmission lines (MTM-DTLs) with a corrugated ground-plane electromagnetic bandgap (CGP-EBG) structure in high-speed printed circuit boards is proposed. The proposed model aims to efficiently and accurately predict the suppression of common-mode noise and differential signal transmission characteristics. Analytical expressions for the four-port impedance matrix of the CGP-EBG MTM-DTL are derived using coupled-line theory and a segmentation method. Converting the impedance matrix into mixed-mode scattering parameters enables obtaining common-mode noise suppression and differential signal transmission characteristics. The comprehensive evaluations of the CGP-EBG MTM-DTL using the proposed analytical model are also reported, which is validated by comparing mixed-mode scattering parameters Scc21 and Sdd21 with those obtained from full-wave simulations and measurements. The proposed analytical model provides a drastic reduction of computation time and accurate results compared to full-wave simulation.


Sign in / Sign up

Export Citation Format

Share Document