Numerical Simulation of a Bending-Torsion Coupling Gear Transmission System

2013 ◽  
Vol 448-453 ◽  
pp. 3403-3407
Author(s):  
Chao Feng Li ◽  
Shi Hua Zhou ◽  
Jie Liu

Based on the establishment of angular contact ball bearing mechanical model, a nonlinear coupled lateral, torsional and axial dynamic model of helical gear-rotor-bearing system is established, and the dynamic differential equations of the coupled lateral-torsional-axial nonlinear vibration are deduced for imbalance rotors. The investigations are systematically carried out by oscillograms and spectrograms with rotating speed, taking into account eccentricity and nonlinear supporting by rolling bearing. The results show that the rotation frequency of the driven shaft appears in the driving shaft. In addition, the rotation frequencies and meshing frequency appear obviously in torsional direction. It can be seen that the lateral, torsional and axial response characteristics of driving and driven shafts obvious differences are due to the effects of the gear assembly characteristic, gear geometry parameters and the angular contact ball bearings characteristics. As a result, not only appear the rotational frequency and stiffness frequency, but also yield the bearing variable stiffness frequency and conbined frequency in lateral directions. However, the theory of the helical gear-rotor-bearing system still needs further research.

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Shihua Zhou ◽  
Zhaohui Ren ◽  
Guiqiu Song ◽  
Bangchun Wen

A sixteen-degree-of-freedom (16-DOF) lumped parameter dynamic model taking into account the gravity, eccentricity, bearing clearance, transmission error, and coupled lateral-torsional vibration is established. Based on the dynamical equation, the dynamic behaviors of the spur gear rotor bearing system are investigated by using Runge-Kutta method. The research focuses on the effect of rotational speed, eccentricity, and bearing clearance and nonlinear response of the coupled multibody dynamics is presented by vibration waveform, spectrum, and 3D frequency spectrum. The results show that the rotational frequency of the driven gear appears in the driving gear, and the dynamic characteristics of gears have obvious differences due to the effects of the gear assembly and the coupled lateral-torsional vibration. The bearing has its own resonance frequency, and the effect of the variable stiffness frequency of the bearings should be avoided during the system design. The results presented in this paper show an analysis of the coupled lateral-torsional vibration of the spur gear system. The study may contribute to a further understanding of the dynamic characteristics of such a spur gear rotor bearing system.


1986 ◽  
Vol 108 (2) ◽  
pp. 230-231 ◽  
Author(s):  
A. V. Metcalfe ◽  
J. S. Burdess

A method for minimizing forced harmonic vibration of a rotor-bearing system by the application of external control forces is presented. The frequency of the vibration is assumed known. In cases of mass unbalance or bend in the shaft this will be shaft rotation frequency and can usually be monitored without difficulty. The control forces could be provided by electromagnetic actuators. The control strategy presented does not require any knowledge of the system parameters and, provided the uncontrolled system is stable, cannot destablize the system. Results from a simulation are shown.


Author(s):  
Yifu Zhou ◽  
Zhong Luo ◽  
Zifang Bian ◽  
Fei Wang

As sophisticated mechanical equipment, the rotor system of aero-engine is assembled by various parts; bolted flange joints are one of the essential ways of joints. Aiming at the analysis of the nonlinear vibration characteristics of the rotor-bearing system with bolted flange joints, in this paper, a finite element modeling method for a rotor-bearing system with bolted flange joints is proposed, and an incremental harmonic balance method combined with arc length continuation is proposed to solve the dynamic solution of the rotor system. In order to solve the rotor system with rolling bearing nonlinearity, the alternating frequency/time-domain process of the rolling bearing element is deduced. Compared with the conventional harmonic balance method and the time-domain method, this method has the characteristics of fast convergence and high computational efficiency; solving the rotor system with nonlinear bearing force; overcome the shortcoming that the frequency–response curve of the system is too sharp to continue solving. By using this method, the influence of bearing clearance and stiffness on vibration characteristics of the rotor system with bolted flange joints is studied. The evolution law of the state of the rotor system with bolt flange is investigated through numerical simulation and experimental data. The results indicated that the modeling and solving method proposed in this paper could accurately solve the rotor-bearing system with bolted flange joints and analyze its vibration characteristics.


Author(s):  
Qinkai Han ◽  
Fulei Chu

Unbalanced response of cracked rotor-bearing system under time-dependent base movements is studied in this paper. Three base angular motions, including the rolling, pitching and yawing motions, are assumed to be sinusoidal perturbations superimposed upon constant terms. Both the open and breathing transverse cracks are considered in the analysis. The finite element model is established for the base excited rotor-bearing system with open or breathing cracks. Considering the time-varying base movements and transverse cracks, the second order differential equations of the system will not only have time-periodic gyroscopic and stiffness coefficients, but also the multi-frequency external excitations. An improved harmonic balance method is introduced to obtain the steady-state response of the system under both base and unbalance excitations. The whirling frequencies of the equivalent time-invariant system, orbits of shaft center, response spectra and frequency response characteristics, are analyzed accordingly. The effects of various base angular motions, frequency and amplitude of base excitations, and crack depths on the system dynamic behaviors are considered in the discussions.


2012 ◽  
Vol 490-495 ◽  
pp. 618-622
Author(s):  
Hua Tao Tang ◽  
Xin Yue Wu

The transfer matrix of rolling bearing including squeeze film damper (SFD) is studied, and the rotor – bearing system is modeled by transfer matrix method of multi-body system. It is proved by an example that the method, which provides a new idea to solve the problem of complex rotor – bearing system, is feasible and effective.


2020 ◽  
Vol 33 ◽  
pp. 1-5
Author(s):  
Guihuo Luo ◽  
Zhaojun Feng ◽  
Zedong Yang ◽  
Nan Zheng ◽  
Wei Chen

2010 ◽  
Vol 34-35 ◽  
pp. 467-471
Author(s):  
Li Cui ◽  
Jian Rong Zheng

Rigid rotor roller bearing system displays complicated nonlinear dynamic behavior due to nonlinear Hertzian force of bearing. Nonlinear bearing forces of roller bearing and dynamic equations of rotor bearing system are established. The bifurcation and stability of the periodic motion of the system in radial clearance-rotating speed and ellipticity-rotating speed parametric domains are studied by use of continuation-shooting algorithm for periodic solutions of nonlinear non-autonomous dynamics system. Results show that the parameters of rotor bearing system should be designed carefully in order to obtain period-1 motion.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yongchao Han ◽  
Ming Li

In this paper, the influence of the heaving motion on the nonlinear dynamic behavior of the rotor-bearing system is considered. First, a mathematic model of the marine rotor-bearing system is developed on the short bearing theory in the noninertial reference system, in which the heaving motion is taken into account. Then its dynamic characteristics are analyzed based on the numerical integration method, such as the bifurcation diagram, the largest Lyapunov exponents (LLE), the steady-state response, and the rotor orbit and its Poincaré map. The results indicate that heaving motion has a great effect on the dynamics of the rotor system, which exhibits a period 1 motion at low rotating speed, with the increase of the rotating speed, the phenomena of the quasiperiodic, period 2, and double Hopf bifurcations appear. Its dynamic performance presents a period 1 motion, period 2, quasiperiodic, and chaotic oscillation.


2010 ◽  
Vol 29-32 ◽  
pp. 2096-2101
Author(s):  
Yue Gang Luo ◽  
Song He Zhang ◽  
Bin Wu ◽  
Bang Chun Wen

The dynamic model of the pedestal looseness fault rotor-bearing system with slowly varying mass was set up. The complex characteristics of the rotor-bearing system were numerically studied. Along with the increase of the looseness mass, the chaotic motion area and amplitude range increase in the region of critical rotating speed; and P-3 motion area disappears in the region of twice-critical rotating speed, chaos is the main motion form. Along with the increase of the coefficient of mass slowly varying amplitude, the instable rotating speed increase, and the chaotic motion area decreases, P-n motion area increases in the region of critical rotating speed and twice-critical rotating speed. The conclusions may provide basis reference for fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document