Ventilation, Turning and Additive Effects on Odor Emissions and Municipal Solid Waste (MSW) Bio-Drying

2013 ◽  
Vol 448-453 ◽  
pp. 564-569
Author(s):  
Xian Ming Cai ◽  
Chun Ping Li ◽  
Xia Qin ◽  
Hong Yu Zhang

A series of biological drying and odor emissions experiments of municipal solid waste (MSW) was made by using independently developed biological drying device. . The results show that: Ventilation increasing contributes to the loss of water and reduction of H2S emission, as well as conducive to biochemical reactions. Additives of T2 and T4 can significantly reduce the emission of H2S and additives of T2 and T3 can significantly reduce the emission of NH3, thus, T2 can preferably chose as biodrying deodorant. Turning process has a certain impact on the biodrying product moisture content, moisture content decreases with the increase of turning times, the moisture of final biodrying product reached 25% when turning twice, reached 22.5% when turning 3 times and, reached 19.1% when turning 4 times. Thus, increase the turning times can significantly reduce moisture content.

2021 ◽  
Vol 11 (12) ◽  
pp. 5500
Author(s):  
Bangxi Zhang ◽  
Feifei Fan ◽  
Chao Guo ◽  
Mingji Yu ◽  
Mingcan Zhao ◽  
...  

With the development of urbanization, kitchen waste and garden waste have become an important part of municipal solid waste (MSW), which is in urgent need of resource treatment. This study investigated the impacts of garden waste as auxiliary materials on maturity and odor emissions (NH3 and H2S) during kitchen waste composting. The result showed that the combined composting product of kitchen waste and garden waste achieved the maturity effect, and the co-composting effect was better than that of separate composting of kitchen waste. Meanwhile, compared with the separate composting treatment of kitchen waste, the co-composting treatment of kitchen waste and garden waste can effectively reduce the cumulative emissions of H2S by more than 85%, and effectively reduce the cumulative emissions of NH3 by more than 75%. This study provides a technical reference for the green fertilizer utilization of kitchen waste and garden waste.


2003 ◽  
Vol 23 (7) ◽  
pp. 667-674 ◽  
Author(s):  
Nitin A. Gawande ◽  
Debra R. Reinhart ◽  
Philip A. Thomas ◽  
Philip T. McCreanor ◽  
Timothy G. Townsend

2012 ◽  
Vol 14 (4) ◽  
pp. 371-378 ◽  
Author(s):  
M. Delgado-Rodríguez ◽  
M. Ruiz-Montoya ◽  
I. Giraldez ◽  
R. López ◽  
E. Madejón ◽  
...  

2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Agnieszka Zawadzka ◽  
Liliana Krzystek ◽  
Stanisław Ledakowicz

AbstractTo carry out autothermal drying processes during the composting of biomass, a horizontal tubular reactor was designed and tested. A biodrying tunnel of the total capacity of 240 dm3 was made of plastic material and insulated with polyurethane foam to prevent heat losses. Municipal solid waste and structural plant material were used as the input substrate. As a result of autothermal drying processes, moisture content decreased by 50 % of the initial moisture content of organic waste of about 800 g kg−1. In the tested cycles, high temperatures of biodried waste mass were achieved (54–56°C). An appropriate quantity of air was supplied to maintain a satisfactory level of temperature and moisture removal in the biodried mass and high energy content in the final product. The heat of combustion of dried waste and its calorific value were determined in a calorimeter. Examinations of pyrolysis and gasification of dried waste confirmed their usefulness as biofuel of satisfactory energy content.


2021 ◽  
Vol 5 (2) ◽  
pp. 9-16
Author(s):  
Imron Rosyadi ◽  
Ni Ketut Caturwati ◽  
Ahmad Fauzi

The increase in the population of Indonesia is proportional to the increase in the amount of waste produced. Municipal solid waste (MSW) especially organic waste, can be used as solid fuel by means of the torefaction process. Torefaction is a thermo-chemical heat treatment method for biomass conversion that takes place at a temperature of 200oC to 300oC under conditions of atmospheric pressure and in the absence of oxygen. The purpose of this study was to determine the effect of moisture content on calorific, proximate and ultimate values ​​of torefaction samples using municipal solid waste. Setting the water content in the mixed sample (30% rice + 70% wood) with variations in moisture content of 30%, 40%, and 50%; and rice and wood samples with variations in moisture content of 40% and 50%. The torefaction was carried out at a temperature of 300oC for one hour and  inert gas  N2. Torefaction products have been tested contain of the calorific value, proximate testing, and ultimate testing. The results obtained were the best calorific value in the rice sample, the moisture content of 40% was 6351.1 cal / g or equivalent to sub-bituminous coal. The proximate and ultimate results of the best heating value are rice samples with 40% moisture content, fixed carbon 62.95%, volatile matter 27.85%, moisture 7.06%, ash 2.14%, carbon 71.85%, hydrogen. 2.80%, nitrogen 3.17%, and sulfur 0.05%. The calorific value calculation method that is almost close to the test results is the Dulong method, with an average error percentage of 1.63%.


Sign in / Sign up

Export Citation Format

Share Document